For all , the equation has at least one real root pair
If , is square-free and , find
Hint: It is recommended that the problem be solved graphically.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Let us deploy Lagrange Multipliers here. If f ( x , y ) = x 2 + x y + y 2 and g ( x , y ) = 2 x 2 + x y − y 2 = 1 , then we have ∇ f = λ ⋅ ∇ g , or:
2 x + y = λ ( 4 x + y ) ;
x + 2 y = λ ( x − 2 y )
or 4 x + y 2 x + y = x − 2 y x + 2 y ⇒ 2 x 2 − 3 x y − 2 y 2 = 4 x 2 + 9 x y + 2 y 2 ⇒ x 2 + 6 x y + 2 y 2 = 0 ⇒ x 2 + 6 x y + 9 y 2 = 7 y 2 ⇒ ( x + 3 y ) 2 = 7 y 2 ⇒ x = ( − 3 ± 7 ) y .
Taking g ( ( − 3 + 7 ) y , y ) = 2 ( − 3 + 7 ) 2 y 2 + ( − 3 + 7 ) y 2 − y 2 = 1 ⇒ y 2 = 2 8 − 1 1 7 1 ⇒ y = ± 2 8 − 1 1 7 i (which are imaginary).
Taking g ( ( − 3 − 7 ) y , y ) = 2 ( − 3 − 7 ) 2 y 2 + ( − 3 − 7 ) y 2 − y 2 = 1 ⇒ y 2 = 2 8 + 1 1 7 1 ⇒ y = ± 2 8 + 1 1 7 1 (which are real).
The Hessian matrix of f computes to:
F ( x , y ) = [ f x x f y x f x y f y y ] = [ 2 1 1 2 ]
which has eigenvalues det ( F − I α ) = 0 ⇒ ( 2 − α ) 2 − 1 = 0 ⇒ α = 2 ± 1 = 1 , 3 that are real, distinct, & positive ⇒ F is positive-definite for all x , y ∈ R .
Hence, we have the real pairs ( x , y ) = ( 2 8 + 1 1 7 3 + 7 , − 2 8 + 1 1 7 1 ) ; ( − 2 8 + 1 1 7 3 + 7 , 2 8 + 1 1 7 1 ) , and substitution of either pair into f yields the minimum value:
m ≥ ( 2 8 + 1 1 7 3 + 7 ) 2 + ( 2 8 + 1 1 7 3 + 7 ) ( − 2 8 + 1 1 7 1 ) + ( − 2 8 + 1 1 7 1 ) 2 ;
or m ≥ 2 8 + 1 1 7 1 6 + 6 7 − 3 − 7 + 1 = 2 8 + 1 1 7 1 4 + 5 7 ⋅ 2 8 − 1 1 7 2 8 − 1 1 7 = 9 − 1 + 2 7 .
or a = − 1 , b = 2 , c = 7 , d = 9 ⇒ a + b + c + d = − 1 + 2 + 7 + 9 = 1 7 .