Another system of equations

Algebra Level 5

{ 2 x 2 + x y y 2 = 1 x 2 + x y + y 2 = m \left\{ \begin{gathered} 2{x^2} + xy - {y^2} = 1 \\ {x^2} + xy + {y^2} = m \\ \end{gathered} \right.

For all m a + b c d m \ge \displaystyle\frac{a+b\sqrt{c}}{d} , the equation has at least one real root pair x , y x,y

If a , b , c , d Z a,b,c,d \in \mathbb{Z} , c c is square-free and gcd ( a , b , d ) = 1 \gcd(a,b,d) = 1 , find a + b + c + d a+b+c+d

Hint: It is recommended that the problem be solved graphically.


The answer is 17.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Tom Engelsman
May 9, 2021

Let us deploy Lagrange Multipliers here. If f ( x , y ) = x 2 + x y + y 2 f(x,y) = x^2 + xy + y^2 and g ( x , y ) = 2 x 2 + x y y 2 = 1 g(x,y) = 2x^2 + xy - y^2 = 1 , then we have f = λ g \nabla f = \lambda \cdot \nabla g , or:

2 x + y = λ ( 4 x + y ) 2x + y = \lambda (4x+y) ;

x + 2 y = λ ( x 2 y ) x+2y = \lambda (x-2y)

or 2 x + y 4 x + y = x + 2 y x 2 y 2 x 2 3 x y 2 y 2 = 4 x 2 + 9 x y + 2 y 2 x 2 + 6 x y + 2 y 2 = 0 x 2 + 6 x y + 9 y 2 = 7 y 2 ( x + 3 y ) 2 = 7 y 2 x = ( 3 ± 7 ) y . \frac{2x+y}{4x+y} = \frac{x+2y}{x-2y} \Rightarrow 2x^2 - 3xy -2y^2 = 4x^2 + 9xy + 2y^2 \Rightarrow x^2 + 6xy + 2y^2 = 0 \Rightarrow x^2 + 6xy + 9y^2 = 7y^2 \Rightarrow (x+3y)^2 = 7y^2 \Rightarrow x = (-3 \pm \sqrt{7})y.

Taking g ( ( 3 + 7 ) y , y ) = 2 ( 3 + 7 ) 2 y 2 + ( 3 + 7 ) y 2 y 2 = 1 y 2 = 1 28 11 7 y = ± i 28 11 7 g((-3+\sqrt{7})y,y) = 2(-3+\sqrt{7})^2y^2 + (-3+\sqrt{7})y^2 - y^2 = 1\ \Rightarrow y^2 = \frac{1}{\sqrt{28-11\sqrt{7}}} \Rightarrow y = \pm\frac{i}{\sqrt{28-11\sqrt{7}}} (which are imaginary).

Taking g ( ( 3 7 ) y , y ) = 2 ( 3 7 ) 2 y 2 + ( 3 7 ) y 2 y 2 = 1 y 2 = 1 28 + 11 7 y = ± 1 28 + 11 7 g((-3-\sqrt{7})y,y) = 2(-3-\sqrt{7})^2y^2 + (-3-\sqrt{7})y^2 - y^2 = 1\ \Rightarrow y^2 = \frac{1}{\sqrt{28+11\sqrt{7}}} \Rightarrow y = \pm\frac{1}{\sqrt{28+11\sqrt{7}}} (which are real).

The Hessian matrix of f f computes to:

F ( x , y ) = [ f x x f x y f y x f y y ] = [ 2 1 1 2 ] F(x,y) = \begin{bmatrix} f_{xx} & f_{xy} \\ f_{yx} & f_{yy} \end{bmatrix} = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}

which has eigenvalues det ( F I α ) = 0 ( 2 α ) 2 1 = 0 α = 2 ± 1 = 1 , 3 \det(F-I\alpha) = 0 \Rightarrow (2-\alpha)^2 -1 = 0 \Rightarrow \alpha = 2 \pm 1 = 1,3 that are real, distinct, & positive F \Rightarrow F is positive-definite for all x , y R . x,y \in \mathbb{R}.

Hence, we have the real pairs ( x , y ) = ( 3 + 7 28 + 11 7 , 1 28 + 11 7 ) ; ( 3 + 7 28 + 11 7 , 1 28 + 11 7 ) \large (x,y) = (\frac{3+\sqrt{7}}{\sqrt{28+11\sqrt{7}}}, -\frac{1}{\sqrt{28+11\sqrt{7}}}); (-\frac{3+\sqrt{7}}{\sqrt{28+11\sqrt{7}}}, \frac{1}{\sqrt{28+11\sqrt{7}}}) , and substitution of either pair into f f yields the minimum value:

m ( 3 + 7 28 + 11 7 ) 2 + ( 3 + 7 28 + 11 7 ) ( 1 28 + 11 7 ) + ( 1 28 + 11 7 ) 2 ; \large m \ge (\frac{3+\sqrt{7}}{\sqrt{28+11\sqrt{7}}})^2 + (\frac{3+\sqrt{7}}{\sqrt{28+11\sqrt{7}}})(-\frac{1}{\sqrt{28+11\sqrt{7}}}) + (-\frac{1}{\sqrt{28+11\sqrt{7}}})^2;

or m 16 + 6 7 3 7 + 1 28 + 11 7 = 14 + 5 7 28 + 11 7 28 11 7 28 11 7 = 1 + 2 7 9 . \large m \ge \frac{16 + 6\sqrt{7} - 3 - \sqrt{7} + 1}{28+11\sqrt{7}} = \frac{14 + 5\sqrt{7}}{28+11\sqrt{7}} \cdot \frac{28-11\sqrt{7}}{28-11\sqrt{7}} = \boxed{\frac{-1+2\sqrt{7}}{9}}.

or a = 1 , b = 2 , c = 7 , d = 9 a + b + c + d = 1 + 2 + 7 + 9 = 17 . a = -1, b =2, c=7, d = 9 \Rightarrow a+b+c+d = -1 + 2+7+9 = \boxed{17}.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...