Another System of Equations?

Algebra Level 3

{ a 4 + ( a b ) 2 + b 4 = 900 a 2 + a b + b 2 = 45 \large{\\ \\ \begin{cases} { a }^{ 4 }+{ ( ab ) }^{ 2 }+{ b }^{ 4 }=900 \\ { a }^{ 2 }+ab+{ b }^{ 2 }=45 \end{cases}}

Let a a and b b be real numbers that satisfy the equation above. Find the value of 2 a b 2ab .


The answer is 25.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Department 8
Jan 12, 2016

First of all divide the first equation by the second one and you will see a 2 a b + b 2 = 20 a^2-ab+b^2=20 . Subtracting this equation from a 2 + a b + b 2 = 45 a^2+ab+b^2=45 we obtain 2 a b = 25 2ab=25 .

Moderator note:

Good approach.

Same way! One of few easy questions of lakshay sinha.

Shreyash Rai - 5 years, 5 months ago

Log in to reply

...........................................................

Lester Jhone Solomon - 5 years, 5 months ago

thank you...

Lester Jhone Solomon - 5 years, 5 months ago

How did you devide these two terms?

אייל קמיצ׳י - 5 years, 5 months ago

Log in to reply

There are many method I used the long division method.

Department 8 - 5 years, 5 months ago

In the first equation multiply both sides by a^2 - b^2 And in the second multiply both by a-b. Then you should be able to see it

Shreyash Rai - 5 years, 5 months ago

Factorize by adding (ab)^2 and subtracting the same.

Deepak Kumar - 5 years, 5 months ago
Chew-Seong Cheong
Jan 14, 2016

It is given that: { a 4 + ( a b ) 2 + b 4 = 900 . . . ( 1 ) a 2 + a b + b 2 = 45 . . . ( 2 ) \begin{cases} a^4 + (ab)^2 + b^4 = 900 & ...(1) \\ a^2 + ab + b^2 = 45 & ...(2) \end{cases}

From (1):

a 4 + ( a b ) 2 + b 4 = 900 ( a 2 + b 2 ) 2 ( a b ) 2 = 900 ( a 2 + b 2 + a b ) ( a 2 + b 2 a b ) = 900 We note that a 2 + a b + b 2 = 45 . . . ( 2 ) 45 ( a 2 + b 2 a b ) = 900 a 2 + b 2 a b = 20 . . . ( 3 ) ( 2 ) ( 3 ) : 2 a b = 25 \begin{aligned} a^4 + (ab)^2 + b^4 & = 900 \\ \Rightarrow (a^2+b^2)^2 - (ab)^2 & = 900 \\ (\color{#3D99F6}{a^2+b^2+ab})(a^2+b^2-ab) & = 900 \quad \quad \small \color{#3D99F6}{\text{We note that } a^2 + ab + b^2 = 45 \quad ...(2) } \\ \color{#3D99F6}{45}(a^2+b^2-ab) & = 900 \\ \Rightarrow a^2+b^2-ab & = 20 \quad ...(3) \\ & \\ (2)-(3): \quad 2ab & = \boxed{25} \end{aligned}

An alternative solution:

a 4 + ( a b ) 2 + b 4 = 900 a 6 b 6 a 2 b 2 = 900 a 3 b 3 a b a 3 + b 3 a + b = 900 { a }^{ 4 }+{ ( ab ) }^{ 2 }+{ b }^{ 4 }=900\Rightarrow\frac{a^{6}-b^{6}}{a^{2}-b^{2}}=900\Rightarrow\frac{a^{3}-b^{3}}{a-b}\cdot\frac{a^{3}+b^{3}}{a+b}=900

a 2 + a b + b 2 = 45 a 3 b 3 a b = 45 { a }^{ 2 }+ab+{ b }^{ 2 }=45\Rightarrow\frac{a^{3}-b^{3}}{a-b}=45

Dividing, we get a 2 a b + b 2 = 20 a^2-ab+b^2=20 , subtracting, we obtain 2 a b = 25 2ab=25 .

exactly what i did.!

Shreyash Rai - 5 years, 5 months ago

Very nice way resulting from recognizing the format of the terms

Calvin Lin Staff - 5 years, 5 months ago
Daniel Ferreira
Feb 14, 2021

( a 2 + a b + b 2 ) 2 = 4 5 2 a 4 + a 2 b 2 + b 4 900 + 2 a 3 b + 2 a 2 b 2 + 2 a b 3 = 2025 2 a b ( a 2 + a b + b 2 ) 45 = 1125 2 a b = 25 (a^2 + ab + b^2)^2 = 45^2 \\\\ \underbrace{a^4 + a^2b^2 + b^4}_{900} + 2a^3b + 2a^2b^2 + 2ab^3 = 2025 \\\\ 2ab \cdot \underbrace{(a^2 + ab + b^2)}_{45} = 1125 \\\\ \boxed{2ab = 25}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...