Another system of equations!

Algebra Level 1

Find x x and y y with x 1 x \geq 1 and y 0 y \geq 0 .

x = 2 x=2 and y = 5 y=5 x = y = 0 x=y=0 x = 5 x=-5 and y = 2 y=-2 x = 5 x=5 and y = 2 y=2

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Here we go. Let's mark the first equation as ( 1 ) (1) and the other as ( 2 ) (2) . We have:

( 1 ) (1) \Leftrightarrow x 2 x y 2 y 2 ( x + y ) = 0 x^{2}-xy-2y^{2}-(x+y)=0

\Leftrightarrow ( x + y ) ( x 2 y ) ( x + y ) = 0 (x+y)(x-2y)-(x+y)=0

\Leftrightarrow ( x + y ) ( x 2 y 1 ) = 0 (x+y)(x-2y-1)=0

\Leftrightarrow x 2 y 1 = 0 x-2y-1=0 (due to x + y > 0 x+y>0 )

\Leftrightarrow x = 2 y + 1 x=2y+1 .

Subtitute x = 2 y + 1 x=2y+1 back in ( 2 ) (2) we got:

y 2 y + 2 y = 2 y + 2 y \sqrt{2y}+ \sqrt{2y}=2y+2

\Leftrightarrow ( y + 1 ) ( 2 y 2 ) = 0 (y+1)( \sqrt{2y}-2)=0

\Leftrightarrow 2 y 2 = 0 \sqrt{2y}-2=0 (due to y 0 y + 1 > 0 y \geq 0 \Rightarrow y+1>0 )

\Leftrightarrow 2 y = 4 2y=4

\Leftrightarrow y = 2 y=2

\Rightarrow x = 5 x=5 .

Solution ends.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...