Another Telescoping Series

Geometry Level 5

Find the sum of the following series----

sin 3 1 1 + sin 3 3 3 + sin 3 9 9 + sin 3 27 27 . . . . . . . . \dfrac{\sin^{3}{1}}{1}+\dfrac{\sin^{3}{3}}{3}+\dfrac{\sin^{3}{9}}{9}+\dfrac{\sin^{3}{27}}{27}........\infty

The angles are given in radians.

Please do not use wolfram alpha.


The answer is 0.6311.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Pratik Shastri
May 31, 2014

Let S N = m = 0 N sin 3 ( 3 m ) 3 m S_N=\displaystyle\sum_{m=0}^{N} \dfrac{\sin^{3}({3^m})}{3^m}

S N = 3 4 m = 0 N 4 sin 3 ( 3 m ) 3 m + 1 \rightarrow S_N=\dfrac{3}{4}\displaystyle\sum_{m=0}^{N} \dfrac{4\sin^{3}({3^m})}{3^{m+1}}

As we know that sin ( 3 x ) = 3 sin x 4 sin 3 x \sin (3x)=3\sin{x}-4\sin^{3}{x}

So 4 sin 3 x = 3 sin x sin ( 3 x ) \rightarrow 4\sin^{3}{x}=3\sin{x}-\sin (3x)

S N = 3 4 m = 0 N ( sin ( 3 m ) 3 m sin ( 3 m + 1 ) 3 m + 1 ) \rightarrow S_N=\dfrac{3}{4}\displaystyle\sum_{m=0}^{N} \left(\dfrac{\sin {(3^m)}}{3^{m}}-\dfrac{\sin {(3^{m+1})}}{3^{m+1}}\right)

Now, Let sin ( 3 m ) 3 m = A m \dfrac{\sin {(3^m)}}{3^{m}}=A_m

So, sin ( 3 m + 1 ) 3 m + 1 = A m + 1 \dfrac{\sin {(3^{m+1})}}{3^{m+1}}=A_{m+1}

S N = 3 4 m = 0 N A m A m + 1 \rightarrow S_N=\dfrac{3}{4}\displaystyle\sum_{m=0}^{N} A_m-A_{m+1}

S N = 3 4 [ ( A 0 A 1 ) + ( A 1 A 2 ) + . . . . . . . . . . . + ( A N 1 A N ) + ( A N A N + 1 ) ] \rightarrow S_N=\dfrac{3}{4} \left[(A_0-A_1)+(A_1-A_2)+...........+(A_{N-1}-A_{N})+(A_{N}-A_{N+1})\right]

S N = 3 4 ( A 0 A N + 1 ) \rightarrow S_N=\dfrac{3}{4}(A_0-A_{N+1})

S N = 3 4 ( sin 1 sin ( 3 N + 1 ) 3 N + 1 ) \rightarrow S_N=\dfrac{3}{4} \left(\sin 1-\dfrac{\sin (3^{N+1})}{3^{N+1}}\right)

Finally, as N N \rightarrow \infty and beyond, :D

S = 3 sin 1 4 0.6311 S_{\infty}=\dfrac{3\sin {1}}{4} \approx \boxed{0.6311}

How to use wolfram alpha? I mean what is it?

Lavisha Parab - 6 years, 7 months ago

did exactly the same way..... ;)

Rehman Hasan Tyeb - 6 years, 8 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...