Another Triangle Problem

Geometry Level 5

Let the distances between the vertices of a unit equilateral triangle and a point on its incircle be a a , b b , and c c .

If a a , b b , and c c are in a geometric progression , then b = p q b = \sqrt{\dfrac pq} , where p p and q q are coprime positive integers. Find p + q p+q .


The answer is 27.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Let the unit equilateral triangle be A B C \triangle ABC and its incenter be the origin O ( 0 , 0 ) O(0,0) ; and A ( 1 2 , 1 2 3 ) A \left(-\frac 12, - \frac 1{2\sqrt 3}\right) , B ( 0 , 1 3 ) B \left(0, \frac 1{\sqrt 3}\right) , and C ( 1 2 , 1 2 3 ) C \left(\frac 12, - \frac 1{2\sqrt 3}\right) . Let the point on the incircle be P ( x , y ) P(x,y) and A P = a AP = a , B P = b BP=b , and C P = c CP=c . Then the incircle is given by x 2 + y 2 = 1 12 x^2 + y^2 = \frac 1{12} and by Pythagorean theorem :

{ a 2 = ( x + 1 2 ) 2 + ( y + 1 2 3 ) 2 = x 2 + x + 1 4 + y 2 + y 3 + 1 12 = 5 12 + x + y 3 b 2 = ( x 0 ) 2 + ( y 1 3 ) 2 = x 2 + y 2 2 y 3 + 1 3 = 5 12 2 y 3 c 2 = ( x 1 2 ) 2 + ( y + 1 2 3 ) 2 = x 2 x + 1 4 + y 2 + y 3 + 1 12 = 5 12 x + y 3 \begin{cases} a^2 = \left(x + \dfrac 12 \right)^2 + \left(y+\dfrac 1{2\sqrt 3}\right)^2 = x^2 + x + \dfrac 14 + y^2 + \dfrac y{\sqrt 3} + \dfrac 1{12} = \dfrac 5{12} + x + \dfrac y{\sqrt 3} \\ b^2 = \left(x - 0 \right)^2 + \left(y - \dfrac 1{\sqrt 3}\right)^2 = x^2 + y^2 - \dfrac {2y}{\sqrt 3} + \dfrac 13 = \dfrac 5{12} - \dfrac {2y}{\sqrt 3} \\ c^2 = \left(x - \dfrac 12 \right)^2 + \left(y+\dfrac 1{2\sqrt 3}\right)^2 = x^2 - x + \dfrac 14 + y^2 + \dfrac y{\sqrt 3} + \dfrac 1{12} = \dfrac 5{12} - x + \dfrac y{\sqrt 3} \end{cases}

For geometric progression, we have a c = b 2 ac = b^2 . Therefore,

a 2 c 2 = b 4 ( 5 12 + x + y 3 ) ( 5 12 x + y 3 ) = ( 5 12 2 y 3 ) 2 ( y 3 + 5 12 ) 2 x 2 = 4 y 2 3 5 y 3 3 + 25 144 y 2 3 + 5 y 6 3 + 25 144 1 12 + y 2 = 4 y 2 3 5 y 3 3 + 25 144 5 y 2 3 = 1 12 y = 3 30 b 2 = 5 12 2 3 × 3 30 = 7 20 b = 7 20 \begin{aligned} a^2 c^2 & = b^4 \\ \left(\frac 5{12} + x + \frac y{\sqrt 3}\right) \left(\frac 5{12} - x + \frac y{\sqrt 3}\right) & = \left(\frac 5{12} - \frac {2y}{\sqrt 3}\right)^2 \\ \left(\frac y{\sqrt 3} + \frac 5{12} \right)^2 - x^2 & = \frac {4y^2}3 - \frac {5y}{3\sqrt 3} + \frac {25}{144} \\ \frac {y^2}3 + \frac {5y}{6\sqrt 3} + \frac {25}{144} - \frac 1{12} + y^2 & = \frac {4y^2}3 - \frac {5y}{3\sqrt 3} + \frac {25}{144} \\ \frac {5y}{2\sqrt 3} & = \frac 1{12} \\ \implies y & = \frac {\sqrt 3}{30} \\ \implies b^2 & = \frac 5{12} - \frac 2{\sqrt 3} \times \frac {\sqrt 3}{30} = \frac 7{20} \\ \implies b & = \sqrt{\frac 7{20}} \end{aligned}

Therefore p + q = 7 + 20 = 27 p+q = 7 + 20 = \boxed{27} .

Nick Kent
Aug 9, 2019

Analytic approach:

Let A = ( 3 6 , 1 2 ) , B = ( 3 6 , + 1 2 ) , C = ( + 3 3 , 0 ) A=\left( -\frac { \sqrt { 3 } }{ 6 } ,-\frac { 1 }{ 2 } \right) ,B=\left( -\frac { \sqrt { 3 } }{ 6 } ,+\frac { 1 }{ 2 } \right) ,C=\left( +\frac { \sqrt { 3 } }{ 3 } ,0 \right) - three points forming a unit equilateral triangle. We need to find point X X on the incircle so that a = A X , b = B X , c = C X a=AX, b=BX, c=CX were in a geometric progression. Let X = ( 3 6 cos α , 3 6 sin α ) X=\left( \frac { \sqrt { 3 } }{ 6 } \cos { \alpha } ,\frac { \sqrt { 3 } }{ 6 } \sin { \alpha } \right) , where α [ 0 ; 2 π ] \alpha \in \left[ 0; 2 \pi \right] .

Now let's derive the distances:

a = A X = ( 3 6 cos α + 3 6 , 3 6 sin α + 1 2 ) = ( 3 6 cos α + 3 6 ) 2 + ( 3 6 sin α + 1 2 ) 2 a = 1 12 cos 2 α + 1 6 cos α + 1 12 + 1 12 sin 2 α + 3 6 sin α + 1 4 = 5 12 + 1 6 cos α + 3 6 sin α a = 5 + 2 cos α + 2 3 sin α 12 a=\left| \overrightarrow { AX } \right| =\left| \left( \frac { \sqrt { 3 } }{ 6 } \cos { \alpha } +\frac { \sqrt { 3 } }{ 6 } ,\frac { \sqrt { 3 } }{ 6 } \sin { \alpha } +\frac { 1 }{ 2 } \right) \right| =\sqrt { { \left( \frac { \sqrt { 3 } }{ 6 } \cos { \alpha } +\frac { \sqrt { 3 } }{ 6 } \right) }^{ 2 }+{ \left( \frac { \sqrt { 3 } }{ 6 } \sin { \alpha } +\frac { 1 }{ 2 } \right) }^{ 2 } } \\ a=\sqrt { \frac { 1 }{ 12 } \cos ^{ 2 }{ \alpha } +\frac { 1 }{ 6 } \cos { \alpha } +\frac { 1 }{ 12 } +\frac { 1 }{ 12 } \sin ^{ 2 }{ \alpha } +\frac { \sqrt { 3 } }{ 6 } \sin { \alpha } +\frac { 1 }{ 4 } } =\sqrt { \frac { 5 }{ 12 } +\frac { 1 }{ 6 } \cos { \alpha } +\frac { \sqrt { 3 } }{ 6 } \sin { \alpha } } \\ a=\sqrt { \frac { 5+2\cos { \alpha } +2\sqrt { 3 } \sin { \alpha } }{ 12 } }

b = B X = ( 3 6 cos α + 3 6 , 3 6 sin α 1 2 ) = ( 3 6 cos α + 3 6 ) 2 + ( 3 6 sin α 1 2 ) 2 b = 1 12 cos 2 α + 1 6 cos α + 1 12 + 1 12 sin 2 α 3 6 sin α + 1 4 = 5 12 + 1 6 cos α 3 6 sin α b = 5 + 2 cos α 2 3 sin α 12 b=\left| \overrightarrow { BX } \right| =\left| \left( \frac { \sqrt { 3 } }{ 6 } \cos { \alpha } +\frac { \sqrt { 3 } }{ 6 } ,\frac { \sqrt { 3 } }{ 6 } \sin { \alpha } -\frac { 1 }{ 2 } \right) \right| =\sqrt { { \left( \frac { \sqrt { 3 } }{ 6 } \cos { \alpha } +\frac { \sqrt { 3 } }{ 6 } \right) }^{ 2 }+{ \left( \frac { \sqrt { 3 } }{ 6 } \sin { \alpha } -\frac { 1 }{ 2 } \right) }^{ 2 } } \\ b=\sqrt { \frac { 1 }{ 12 } \cos ^{ 2 }{ \alpha } +\frac { 1 }{ 6 } \cos { \alpha } +\frac { 1 }{ 12 } +\frac { 1 }{ 12 } \sin ^{ 2 }{ \alpha } -\frac { \sqrt { 3 } }{ 6 } \sin { \alpha } +\frac { 1 }{ 4 } } =\sqrt { \frac { 5 }{ 12 } +\frac { 1 }{ 6 } \cos { \alpha } -\frac { \sqrt { 3 } }{ 6 } \sin { \alpha } } \\ b=\sqrt { \frac { 5+2\cos { \alpha } -2\sqrt { 3 } \sin { \alpha } }{ 12 } }

c = C X = ( 3 6 cos α 3 3 , 3 6 sin α ) = ( 3 6 cos α 3 3 ) 2 + ( 3 6 sin α ) 2 c = 1 12 cos 2 α 1 3 cos α + 1 3 + 1 12 sin 2 α = 5 12 1 3 cos α c = 5 4 cos α 12 c=\left| \overrightarrow { CX } \right| =\left| \left( \frac { \sqrt { 3 } }{ 6 } \cos { \alpha } -\frac { \sqrt { 3 } }{ 3 } ,\frac { \sqrt { 3 } }{ 6 } \sin { \alpha } \right) \right| =\sqrt { { \left( \frac { \sqrt { 3 } }{ 6 } \cos { \alpha } -\frac { \sqrt { 3 } }{ 3 } \right) }^{ 2 }+{ \left( \frac { \sqrt { 3 } }{ 6 } \sin { \alpha } \right) }^{ 2 } } \\ c=\sqrt { \frac { 1 }{ 12 } \cos ^{ 2 }{ \alpha } -\frac { 1 }{ 3 } \cos { \alpha } +\frac { 1 }{ 3 } +\frac { 1 }{ 12 } \sin ^{ 2 }{ \alpha } } =\sqrt { \frac { 5 }{ 12 } -\frac { 1 }{ 3 } \cos { \alpha } } \\ c=\sqrt { \frac { 5-4\cos { \alpha } }{ 12 } }

Since a , b , c a, b, c are in a geometric progression, the following is true:

a b = b c a c = b b a 2 c 2 = b 2 b 2 \frac { a }{ b } =\frac { b }{ c } \\ a\cdot c= b\cdot b\\ { a }^{ 2 }\cdot { c }^{ 2 }={ b }^{ 2 } \cdot { b }^{ 2 }

Now let's use the derived expressions:

5 + 2 cos α + 2 3 sin α 12 5 4 cos α 12 = 5 + 2 cos α 2 3 sin α 12 5 + 2 cos α 2 3 sin α 12 25 + 10 cos α + 10 3 sin α 20 cos α 8 cos 2 α 8 3 sin α cos α = 25 + 4 cos 2 α + 12 sin 2 α + 20 cos α 20 3 sin α 8 3 sin α cos α 0 = 30 cos α 30 3 sin α + 12 cos 2 α + 12 sin 2 α 2 cos α 2 3 sin α = 4 5 \frac { 5+2\cos { \alpha } +2\sqrt { 3 } \sin { \alpha } }{ 12 } \cdot \frac { 5-4\cos { \alpha } }{ 12 } =\frac { 5+2\cos { \alpha } -2\sqrt { 3 } \sin { \alpha } }{ 12 } \cdot \frac { 5+2\cos { \alpha } -2\sqrt { 3 } \sin { \alpha } }{ 12 } \\ 25+10\cos { \alpha } +10\sqrt { 3 } \sin { \alpha } -20\cos { \alpha } -8\cos ^{ 2 }{ \alpha } -8\sqrt { 3 } \sin { \alpha } \cos { \alpha } =25+4\cos ^{ 2 }{ \alpha } +12\sin ^{ 2 }{ \alpha } +20\cos { \alpha } -20\sqrt { 3 } \sin { \alpha } -8\sqrt { 3 } \sin { \alpha } \cos { \alpha } \\ 0=30\cos { \alpha } -30\sqrt { 3 } \sin { \alpha } +12\cos ^{ 2 }{ \alpha } +12\sin ^{ 2 }{ \alpha } \\ 2\cos { \alpha } -2\sqrt { 3 } \sin { \alpha } =-\frac { 4 }{ 5 }

Finally now we can recall the expression of b b and find the value:

b = 5 + 2 cos α 2 3 sin α 12 b = 5 4 5 12 = 25 4 60 = 21 60 = 7 20 b=\sqrt { \frac { 5+2\cos { \alpha } -2\sqrt { 3 } \sin { \alpha } }{ 12 } } \\ b=\sqrt { \frac { 5-\frac { 4 }{ 5 } }{ 12 } } =\sqrt { \frac { 25-4 }{ 60 } } =\sqrt { \frac { 21 }{ 60 } } =\sqrt { \frac { 7 }{ 20 } }

Thus, p = 7 , q = 20 p=7,q=20 and the answer is 27 \boxed { 27 }

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...