Another Tricky Infinite Sum

Calculus Level 3

2 n = 0 ( 1 ) n ( π / 5 ) 2 n ( 2 n ) ! = ? \large 2 \cdot \sum_{n=0}^{\infty} (-1)^{n} \cdot \frac{(\pi/5)^{2n}}{(2n)!}=\, ?

e e 3 \sqrt{3} π \pi ϕ \phi

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Mar 11, 2016

2 n = 0 ( 1 ) n ( π 5 ) 2 n ( 2 n ) ! = 2 cos ( π 5 ) Maclaurin series = 2 ( 1 + 5 4 ) = φ See Note \begin{aligned} 2\sum_{n=0}^\infty \frac{(-1)^n \left(\frac{\pi}{5}\right)^{2n}}{(2n)!} & = 2\cos \left(\frac{\pi}{5} \right) \quad \quad \small \color{#3D99F6}{\text{Maclaurin series}} \\ & = 2\left(\color{#3D99F6}{\frac{1+\sqrt{5}}{4}} \right) = \boxed{\varphi} \quad \quad \small \color{#3D99F6}{\text{See Note}} \end{aligned}

Note: \color{#3D99F6}{\text{Note:}}

Using the identity:

cos ( π 5 ) + cos ( 3 π 5 ) = 1 2 cos ( π 5 ) cos ( 2 π 5 ) = 1 2 cos ( π 5 ) 2 cos 2 ( π 5 ) + 1 = 1 2 4 cos 2 ( π 5 ) 2 cos ( π 5 ) 1 = 0 cos ( π 5 ) = 2 ± 4 + 16 8 = 1 + 5 4 cos ( π 5 ) > 0 \begin{aligned} \cos \left(\frac{\pi}{5} \right) + \cos \left(\frac{3\pi}{5} \right) & = \frac{1}{2} \\ \cos \left(\frac{\pi}{5} \right) - \cos \left(\frac{2\pi}{5} \right) & = \frac{1}{2} \\ \cos \left(\frac{\pi}{5} \right) - 2 \cos^2 \left(\frac{\pi}{5} \right) + 1 & = \frac{1}{2} \\ 4 \cos^2 \left(\frac{\pi}{5} \right) - 2 \cos \left(\frac{\pi}{5} \right) - 1& = 0 \\ \Rightarrow \cos \left(\frac{\pi}{5} \right) & = \frac{2 \pm \sqrt{4+16}}{8} \\ & = \frac{1+\sqrt{5}}{4} \quad \quad \small \color{#3D99F6}{\cos \left(\frac{\pi}{5} \right) > 0} \end{aligned}

How did the Maclaurin Series get there?

Oon Han - 2 years, 5 months ago

Do you mean how did I key it in? You can see the LaTex code by place your mouse cursor on top of the formula.

Chew-Seong Cheong - 2 years, 5 months ago

Log in to reply

No, I meant how did you evaluate the Maclaurin series to 2cos(pi / 5)?

Oon Han - 2 years, 5 months ago

Log in to reply

By Maclaurin serise cos x = n = 0 ( 1 ) n x 2 n ( 2 n ) ! \cos x = \displaystyle \sum_{n=0}^\infty \frac {(-1)^n x^{2n}}{(2n)!} . Putting x = π 5 x=\frac \pi 5 .

Chew-Seong Cheong - 2 years, 5 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...