Another Trignometric Series

Calculus Level 3

f ( x ) = 1 1 2 cos x + 1 × 3 2 × 4 cos 2 x 1 × 3 × 5 2 × 4 × 6 cos 3 x . f(x) = 1 - \dfrac{1}{2} \cos x + \dfrac{1 \times 3}{2 \times 4} \cos 2x - \dfrac{1 \times 3 \times 5}{2 \times 4 \times 6} \cos 3x \cdots.

10000 × f ( π 3 ) = ? \displaystyle \left \lfloor 10000 \times f\left( \dfrac{\pi}{3} \right) \right \rfloor = \ ?


The answer is 7339.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Vraj Mehta
Jan 13, 2015

First Of All We Assume An Equation With Negative Index

( 1 + x ) n { \left( 1+x \right) }^{ -n }

Where n ϵ R + \quad n \quad \epsilon \quad {R}^{+}

( 1 + x ) n { \left( 1+x \right) }^{ -n } = 1 n x + n ( n + 1 2 x 2 n ( n + 1 ) ( n + 2 ) 1.2.3 1 - nx + \dfrac{n(n+1}{2} x^{2} - \dfrac{n(n+1)(n+2)}{1.2.3} \cdots

And Comparing With the Given Equation,

1 1 2 c o s x + 1.3 2.4 c o s 2 x 1.3.5 2.4.6 c o s 3 x 1 - \dfrac{1}{2} cosx + \dfrac{1.3}{2.4} cos2x - \dfrac{1.3.5}{2.4.6} cos3x \cdots

We Get,

n x = 1 2 c o s x nx = \dfrac{1}{2}cosx

And

n ( n + 1 ) 2 x 2 = 1.3 2.4 c o s 2 x \dfrac{n(n+1)}{2}x^{2} = \dfrac{1.3}{2.4}cos2x

Solving Them We Get

n = 1 2 n = \dfrac{1}{2}

And

Substituting In The Third Term To Verify The Consistency. \textbf{ Verify The Consistency.}

Then The Required Solution Is

( 1 + e i θ ) 1 2 (1+e^{i\theta})^{\dfrac{-1}{2}} = 1 1 2 e i θ + 1.3 2.4 ( e i θ ) 2 1.3.5 2.4.6 ( e i θ ) 3 1 - \dfrac{1}{2} e^{i\theta} + \dfrac{1.3}{2.4}(e^{i\theta})^{2}- \dfrac{1.3.5}{2.4.6}(e^{i\theta})^{3} \cdots

Using De Moivre's formula That

( cos x + i sin x ) α = cos ( α x ) + i sin ( α x ) (\cos x + i \sin x)^\alpha= \cos (\alpha x) + i \sin (\alpha x)

We Get,

( 1 + e i θ ) 1 2 (1+e^{i\theta})^{\dfrac{-1}{2}} = 1 1 2 ( cos ( x ) + i sin ( x ) ) + 1.3 2.4 ( cos ( 2 x ) + i sin ( 2 x ) ) 1.3.5 2.4.6 ( cos ( 3 x ) + i sin ( 3 x ) ) 1 - \dfrac{1}{2}(\cos (x) + i \sin (x)) + \dfrac{1.3}{2.4}(\cos (2x) + i \sin (2x))- \dfrac{1.3.5}{2.4.6}(\cos (3x) + i \sin (3x)) \cdots

R e ( 1 + e i θ ) 1 2 Re{(1+e^{i\theta})^{\dfrac{-1}{2}}} = 1 1 2 c o s x + 1.3 2.4 c o s 2 x 1.3.5 2.4.6 c o s 3 x 1 - \dfrac{1}{2} cosx + \dfrac{1.3}{2.4} cos2x - \dfrac{1.3.5}{2.4.6} cos3x \cdots

Where Re is the Real Part Of the Complex Number \textbf{Where Re is the Real Part Of the Complex Number}

So

f ( x ) = R e ( 1 + e i θ ) 1 2 f(x) = Re{(1+e^{i\theta})^{\dfrac{-1}{2}}}

f ( π 3 ) = R e ( 1 + e i π 3 ) 1 2 f(\dfrac{\pi}{3}) = Re{(1+e^{i\dfrac{\pi}{3}})^{\dfrac{-1}{2}}}

Upon Simplifying The Above Equation We get,

f ( π 3 ) = 2 c o s 2 ( π 12 ) c o s ( π 6 ) f(\dfrac{\pi}{3}) =\sqrt{\dfrac{2cos^2(\dfrac{\pi}{12})}{cos(\dfrac{\pi}{6})}}

f ( π 3 ) = 3 1 4 . cos ( π 12 ) f(\dfrac{\pi}{3}) = 3^{\dfrac{-1}{4}}.\cos(\dfrac{\pi}{12}) = 0.733944 \boxed{0.733944\cdots}

Did the same except the fact that I considered substituting e i n x + e i n x 2 \frac{{e}^{inx} + {e}^{-inx}}{2} for c o s ( n x ) cos(nx) and then little bashing.

Kartik Sharma - 6 years, 4 months ago

This problem is underrated!

Md Zuhair - 2 years, 3 months ago
Shashwat Shukla
Jan 13, 2015

We have:

1 1 + x = 1 1 2 x + 1 3 2 4 x 2 1 3 5 2 4 6 x 3 . . . \frac{1}{\sqrt{1+x}}=1-\frac{1}{2}x+\frac{1*3}{2*4}x^2-\frac{1*3*5}{2*4*6}x^3...

The required expression is then the real part of what one gets upon making the substitution

x = e i x x= e^{ix}

Let z = 1 1 + e i x z=\frac{1}{\sqrt{1+e^{ix}}} .

Then,

( z ) = z + z ˉ 2 \Re(z) =\frac{z+\bar{z}}{2}

Where z ˉ = 1 1 + e i x \bar{z}=\frac{1}{\sqrt{1+e^{-ix}}}

This upon further simplification gives:

( z ) = 2 c o s 2 ( x 4 ) c o s ( x 2 ) \Re(z) =\sqrt{\frac{2cos^2(\frac{x}{4})}{cos(\frac{x}{2})}}

Now just plug in x = π 3 x=\frac{\pi}{3} .

Though I made this problem incorrect , but

Making the substitution does'nt give that expression , you should show whole solution , many may can't understand.

f ( x ) = 1 1 2 c o s x + 1.3 2.4 c o s 2 x 1.3.5 2.4.6 c o s 3 x . f(x) = 1 - \dfrac{1}{2} cosx + \dfrac{1.3}{2.4} cos2x - \dfrac{1.3.5}{2.4.6} cos3x \cdots.

g ( x ) = 1 2 s i n x + 1.3 2.4 s i n 2 x 1.3.5 2.4.6 s i n 3 x . g(x) = - \dfrac{1}{2} sinx + \dfrac{1.3}{2.4} sin2x - \dfrac{1.3.5}{2.4.6} sin3x \cdots.

f ( x ) + i ( g ( x ) ) = 1 1 2 ( cos ( x ) + i sin ( x ) ) + 1.3 2.4 ( cos ( 2 x ) + i sin ( 2 x ) ) 1.3.5 2.4.6 ( cos ( 3 x ) + i sin ( 3 x ) ) f(x) + i(g(x)) = 1 - \dfrac{1}{2}(\cos (x) + i \sin (x)) + \dfrac{1.3}{2.4}(\cos (2x) + i \sin (2x))- \dfrac{1.3.5}{2.4.6}(\cos (3x) + i \sin (3x)) \cdots

f ( x ) + i ( g ( x ) ) = 1 1 2 ( e i θ ) + 1.3 2.4 ( e i θ ) 2 1.3.5 2.4.6 ( e i θ ) 3 f(x) + i(g(x)) = 1 - \dfrac{1}{2}( e^{i\theta}) + \dfrac{1.3}{2.4}(e^{i\theta})^{2} - \dfrac{1.3.5}{2.4.6}(e^{i\theta})^{3} \cdots

= 1 + 1 1.2 e i θ + 1 2 . 3 2 1.2 × ( e i θ ) 2 1 2 . 3 2 . 5 2 1.2.3 × ( e i θ ) 3 + . . . . . . . = 1 + \dfrac{1}{1.2}e^{i\theta} + \dfrac{\dfrac{1}{2}.\dfrac{3}{2}}{1.2}\times(e^{i\theta})^{2} - \dfrac{\dfrac{1}{2}.\dfrac{3}{2}.\dfrac{5}{2}}{1.2.3}\times(e^{i\theta})^{3} + .......

= 1 + 1 1.2 e i θ + 1 2 . ( 1 + 1 2 ) 2 ! × ( e i θ ) 2 + 1 2 . ( 1 + 1 2 ) . ( 2 + 1 2 ) 3 ! × ( e i θ ) 3 + . . . . . . . = 1 + \dfrac{1}{1.2}e^{i\theta} + \dfrac{ \dfrac{1}{2}.(1 + \dfrac{1}{2})}{2!}\times(e^{i\theta})^{2} + \dfrac{\dfrac{1}{2}.(1+\dfrac{1}{2}).(2 + \dfrac{1}{2})}{3!}\times(e^{i\theta})^{3} + .......

Now yours equation comes to play,

1 1 + x = 1 1 2 x + 1 3 2 4 x 2 1 3 5 2 4 6 x 3 . . . \dfrac{1}{\sqrt{1+x}}=1-\frac{1}{2}x+\frac{1*3}{2*4}x^2-\frac{1*3*5}{2*4*6}x^3...

thus ,

= 1 1 + e x = \dfrac{1}{\sqrt{1+e^x}}

Nicely founded real part, this part made me wrong

U Z - 6 years, 5 months ago

Log in to reply

Perhaps this is too late a reply but I did mention that it is the r e a l real p a r t part of what one gets after making the substitution. My apologies if it was still unclear...

Shashwat Shukla - 6 years, 4 months ago

since the denominator is undefined for cos(π/2)=0 your last expression in a square root is ambiguous.

elshaday Alemu - 5 years, 7 months ago

Consider the binomial expansion of 1 1 + x \dfrac 1{\sqrt{1+x}} :

( 1 + x ) 1 2 = 1 1 2 x + 1 2 × 3 2 2 ! x 2 1 2 × 3 2 × 5 2 3 ! + = 1 1 2 x + 1 × 3 2 × 4 x 2 1 × 3 × 5 2 × 4 × 6 x 3 + 1 1 + e x i = 1 1 2 e x i + 1 × 3 2 × 4 e 2 x i 1 × 3 × 5 2 × 4 × 6 e 3 x i + By Euler’s formula: e θ i = cos θ + i sin θ ( 1 1 + e x i ) = 1 1 2 cos x + 1 × 3 2 × 4 cos 2 x 1 × 3 × 5 2 × 4 × 6 cos 3 x + where ( ) denotes the real part of a complex number. \begin{aligned} (1+x)^{-\frac 12} & = 1 - \frac 12 x + \frac {\frac 12 \times \frac 32}{2!} x^2 - \frac {\frac 12 \times \frac 32 \times \frac 52}{3!} + \cdots \\ & = 1 - \frac 12 x + \frac {1\times 3}{2\times 4}x^2 - \frac {1\times 3 \times 5}{2\times 4 \times 6} x^3 + \cdots \\ \frac 1{\sqrt{1+e^{xi}}} & = 1 - \frac 12 e^{xi} + \frac {1\times 3}{2\times 4}e^{2xi} - \frac {1\times 3 \times 5}{2\times 4 \times 6} e^{3xi} + \cdots & \small \color{#3D99F6} \text{By Euler's formula: }e^{\theta i} = \cos \theta + i \sin \theta \\ \Re \left(\frac 1{\sqrt{1+e^{xi}}}\right) & = 1 - \frac 12 \cos x + \frac {1\times 3}{2\times 4}\cos 2x - \frac {1\times 3 \times 5}{2\times 4 \times 6} \cos 3x + \cdots & \small \color{#3D99F6} \text{where }\Re (\cdot) \text{ denotes the real part of a complex number.} \end{aligned}

f ( x ) = ( 1 1 + e x i ) f ( π 3 ) = ( 1 1 + e π 3 i ) = ( 1 3 2 + 3 2 i ) = ( 1 3 ( 3 2 + 1 2 i ) ) = ( e π 12 i 3 4 ) = ( cos π 12 i sin π 12 3 4 ) = = cos π 12 3 4 0.7339 \begin{aligned} \implies f (x) & = \Re \left(\frac 1{\sqrt{1+e^{xi}}}\right) \\ f\left(\frac \pi 3\right) & = \Re \left(\frac 1{\sqrt{1+e^{\frac \pi 3i}}}\right) = \Re \left(\frac 1{\sqrt{\frac 32 + \frac {\sqrt 3}2i}}\right) = \Re \left(\frac 1{\sqrt{\sqrt 3\left(\frac {\sqrt 3}2 + \frac 12i\right)}}\right) \\ & = \Re \left(\frac {e^{-\frac \pi {12}i}}{\sqrt[4]3}\right) = \Re \left(\frac {\cos \frac \pi{12}-i \sin \frac \pi{12}}{\sqrt[4]3}\right) = = \frac {\cos \frac \pi{12}}{\sqrt[4]3} \approx 0.7339 \end{aligned}

Therefore, 10000 f ( π 3 ) = 7339 \left \lfloor 10000 f\left(\frac \pi 3\right) \right \rfloor = \boxed{7339} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...