Another Trigo Problem

Geometry Level 2

csc 1 0 + csc 5 0 csc 7 0 = ? \large \csc10^\circ + \csc 50^\circ - \csc 70^\circ = \ ?


The answer is 6.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
May 24, 2017

x = csc 1 0 + csc 5 0 csc 7 0 = 1 sin 1 0 + 1 sin 5 0 1 sin 7 0 = 1 sin 1 0 + 1 sin ( 6 0 1 0 ) 1 sin ( 6 0 + 1 0 ) = 1 sin 1 0 + 1 3 2 cos 1 0 1 2 sin 1 0 1 3 2 cos 1 0 + 1 2 sin 1 0 = 1 sin 1 0 + 4 sin 1 0 3 cos 2 1 0 sin 2 1 0 = 1 sin 1 0 + 4 sin 1 0 3 ( 1 sin 2 1 0 ) sin 2 1 0 = 1 sin 1 0 + 4 sin 1 0 3 4 sin 2 1 0 = 3 4 sin 2 1 0 + 4 sin 2 1 0 3 sin 1 0 4 sin 3 1 0 = 3 sin 3 0 = 6 \begin{aligned} x & = \csc 10^\circ + \csc 50^\circ - \csc 70^\circ \\ & = \frac 1{\sin 10^\circ} + \frac 1{\sin 50^\circ} - \frac 1{\sin 70^\circ} \\ & = \frac 1{\sin 10^\circ} + \frac 1{\sin (60^\circ-10^\circ)} - \frac 1{\sin (60^\circ+10^\circ)} \\ & = \frac 1{\sin 10^\circ} + \frac 1{\frac {\sqrt 3}2 \cos 10^\circ - \frac 12 \sin 10^\circ} - \frac 1{\frac {\sqrt 3}2 \cos 10^\circ + \frac 12 \sin 10^\circ} \\ & = \frac 1{\sin 10^\circ} + \frac {4\sin 10^\circ}{3\cos^2 10^\circ - \sin^2 10^\circ} \\ & = \frac 1{\sin 10^\circ} + \frac {4\sin 10^\circ}{3(1-\sin^2 10^\circ) - \sin^2 10^\circ} \\ & = \frac 1{\sin 10^\circ} + \frac {4\sin 10^\circ}{3 - 4\sin^2 10^\circ} \\ & = \frac {3 - 4\sin^2 10^\circ + 4\sin^2 10^\circ}{3\sin 10^\circ - 4\sin^3 10^\circ} \\ & = \frac 3{\sin 30^\circ} \\ & = \boxed{6} \end{aligned}

cosec 10 + cosec 50 - cosec 70 ..

sec 80 + sec 40 - sec 20 . .. (1/cos 80) + (1/cos 40) - (1/cos 20) ...

(cos 40 + cos 80) / (cos 80 cos 40) - (1/cos 20) ...

Apply cos A + cos B = 2 cos ((A + B)/2) cos ((A - B)/2) ..

(2 cos 60 cos 20) / (cos 40 cos 80) - (1/cos 20) ..

(cos 20) / (cos 40 cos 80) - (1/cos 20) ...

Take LCM and add both ...

(cos²20 - cos 40 cos 80) / (cos 20 cos 40 cos 80) ...

I am gonna solve the denominator seperately, ...

cos 20 cos 40 cos 80 ..

Multiply and divide by 2 sin 20 ..

(2 sin 20 cos 20 cos 40 cos 80) / (2 sin 20) ..

2 sin A cos A = sin 2A ..

(sin 40 cos 40 cos 80) / (2 sin 20) .. . Multiply and divide by 2 ...

(2 sin 40 cos 40 cos 80) / (4 sin 20) ...

(sin 80 cos 80) / (4 sin 20) ....

Again 2, ....

sin 160 / (8 sin 20) ....

sin (180 - 20) = sin 20 ....

sin 160 = sin 20 .....

= 1/8 ...

So, denominator is equal to 1/8 ...

Our expression becomes....,

8 (cos²20 - cos 40 cos 80) ....

Take one 2 inside and use 2 cos A cos B = cos ((A + B)/2) + cos ((A - B)/2) .....

4 (2cos²20 - (cos 120 + cos 40)) ....

2cos²A = 1 + cos 2A ....

4 (1 + cos 40 - cos 120 - cos 40) .....

4 (1 - cos 120) ....

4 (1 - (-1/2)) ....

4 (3/2) = 6....

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...