∫ 0 2 π 3 + 1 2 sin 2 x − 2 cos 2 x + 1 2 sin 2 x cos 2 x + 3 cos 4 x 4 cos x d x = a π
Find a .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
By expressing all the terms in the denominator in terms of cos ( 2 x ) , we can simplify the denominator of the integrand to 6 − 2 cos ( 2 x ) = 6 − 2 ( 1 − 2 sin 2 x )
Apply the substitution of y = sin x , the integral breaks down to 4 π .
The denominator is equivalent to 1 2 sin 2 x 2 cos 2 x ( 1 + cos ( 2 x ) ) + 3 2 c o s 2 ( 2 x ) ( 1 + cos ( 4 x ) ) − 2 cos ( 2 x ) = 2 4 sin 2 x cos 2 x + 6 cos 2 ( 2 x ) − 2 cos ( 2 x ) = 6 ( sin ( 2 x ) 2 sin x cos x ) 2 + 6 cos 2 ( 2 x ) − 2 cos ( 2 x ) = 6 sin 2 ( 2 x ) + 6 cos 2 ( 2 x ) − 2 cos ( 2 x ) = 6 ( 1 sin 2 ( 2 x ) + 6 cos 2 ( 2 x ) ) − 2 cos ( 2 x ) = 6 − 2 cos ( 2 x ) Then, ∫ x = 0 2 π 6 − 2 cos ( 2 x ) 4 cos x d x = ∫ x = 0 2 p i 3 − ( 1 − 2 sin 2 x ) 2 cos x d x = ∫ x = 0 2 π 2 + 2 sin 2 x 2 cos x d x = ∫ x = 0 2 π 1 + sin 2 x cos x d x Let u = sin x so d u = cos x d x . ∫ u = 0 1 1 + u 2 1 d u = arctan ( 1 ) − arctan ( 0 ) = 4 π
Problem Loading...
Note Loading...
Set Loading...
I = 3 + 1 2 sin 2 x − 2 cos 2 x + 1 2 sin 2 x cos 2 x + 3 cos 4 x 4 cos x = 3 + 1 2 sin 2 x ( 1 + cos 2 x ) − 2 cos 2 x + 3 cos 4 x 4 cos x = 3 + 2 4 sin 2 x cos 2 x − 2 ( 2 cos 2 x − 1 ) + 3 cos 4 x 4 cos x = 3 + 2 4 sin 2 x cos 2 x − 4 cos 2 x + 2 + 3 cos 4 x 4 cos x = 5 + 2 4 sin 2 x cos 2 x − 4 cos 2 x + 3 ( 2 cos 2 2 x − 1 ) 4 cos x = 5 + 2 4 sin 2 x cos 2 x − 4 cos 2 x + 6 ( 2 cos 2 x − 1 ) 2 − 3 4 cos x = 2 + 2 4 sin 2 x cos 2 x − 4 cos 2 x + 6 ( 4 cos 4 x + 1 − 4 cos 2 x ) 4 cos x = 1 + 1 2 sin 2 x cos 2 x − 2 cos 2 x + 3 ( 4 cos 4 x + 1 − 4 cos 2 x ) 2 cos x = 1 + 1 2 sin 2 x cos 2 x − 2 cos 2 x + 1 2 cos 4 x + 3 − 1 2 cos 2 x 2 cos x = 4 + 1 2 cos 2 x ( sin 2 x − 1 ) − 2 cos 2 x + 1 2 cos 4 x 2 cos x = 4 − 1 2 cos 4 x − 2 cos 2 x + 1 2 cos 4 x 2 cos x = 2 − cos 2 x cos x ⇒ ∫ 0 2 π I d x = ∫ 0 2 π 2 − cos 2 x cos x d x = ∫ 0 2 π 2 − ( 1 − sin 2 x ) d sin x = ∫ 0 2 π 1 + sin 2 x d sin x = [ arctan ( sin x ) ] 0 2 π = arctan ( sin 2 π ) − arctan ( sin 0 ) = arctan 1 − arctan 0 = 4 π − 0 = 4 1 π = a π ⇒ a = 4 1 = 0 . 2 5