Another Trigonometric Integral

Calculus Level 4

0 π 2 4 cos x 3 + 12 sin 2 x 2 cos 2 x + 12 sin 2 x cos 2 x + 3 cos 4 x d x = a π \int_0^\frac \pi 2 \frac{4\cos{x}}{3+12\sin^2{x}-2\cos{2x} + 12\sin^2{x}\cos{2x}+3\cos{4x}} \ dx = a \pi

Find a a .

Inspiration


The answer is 0.25.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Zakir Husain
Apr 3, 2021

I = 4 cos x 3 + 12 sin 2 x 2 cos 2 x + 12 sin 2 x cos 2 x + 3 cos 4 x I=\dfrac{4\cos x}{3+\red{12\sin^2x}-2\cos 2x+\red{12\sin^2x\cos 2x} + 3\cos 4x} = 4 cos x 3 + 12 sin 2 x ( 1 + cos 2 x ) 2 cos 2 x + 3 cos 4 x =\dfrac{4\cos x}{3+12\sin^2x(\red{1+\cos 2x})-2\blue{\cos 2x}+ 3\cos 4x} = 4 cos x 3 + 24 sin 2 x cos 2 x 2 ( 2 cos 2 x 1 ) + 3 cos 4 x =\dfrac{4\cos x}{3+24\sin^2x\cos^2x-2(\blue{2\cos^2x-1})+ 3\cos 4x} = 4 cos x 3 + 24 sin 2 x cos 2 x 4 cos 2 x + 2 + 3 cos 4 x =\dfrac{4\cos x}{\blue{3}+24\sin^2x\cos^2x-4\cos^2x+\blue{2}+ 3\red{\cos 4x}} = 4 cos x 5 + 24 sin 2 x cos 2 x 4 cos 2 x + 3 ( 2 cos 2 2 x 1 ) =\dfrac{4\cos x}{{5}+24\sin^2x\cos^2x-4\cos^2x+ 3(2\red{\cos^2 2x}-1)} = 4 cos x 5 + 24 sin 2 x cos 2 x 4 cos 2 x + 6 ( 2 cos 2 x 1 ) 2 3 =\dfrac{4\cos x}{\blue{5}+24\sin^2x\cos^2x-4\cos^2x+ 6{(2\cos^2x-1)}^2\blue{-3}} = 4 cos x 2 + 24 sin 2 x cos 2 x 4 cos 2 x + 6 ( 4 cos 4 x + 1 4 cos 2 x ) =\dfrac{4\cos x}{2+24\sin^2x\cos^2x-4\cos^2x+ 6{(4\cos^4x+1-4\cos^2x)}} = 2 cos x 1 + 12 sin 2 x cos 2 x 2 cos 2 x + 3 ( 4 cos 4 x + 1 4 cos 2 x ) =\dfrac{2\cos x}{1+12\sin^2x\cos^2x-2\cos^2x+ 3(4\cos^4x+1-4\cos^2x)} = 2 cos x 1 + 12 sin 2 x cos 2 x 2 cos 2 x + 12 cos 4 x + 3 12 cos 2 x =\dfrac{2\cos x}{\blue{1}+\red{12\sin^2x\cos^2x}-2\cos^2x+ 12\cos^4x+\blue{3}-\red{12\cos^2x}} = 2 cos x 4 + 12 cos 2 x ( sin 2 x 1 ) 2 cos 2 x + 12 cos 4 x =\dfrac{2\cos x}{4+12\cos^2x(\red{\sin^2x-1})-2\cos^2x+ 12\cos^4x} = 2 cos x 4 12 cos 4 x 2 cos 2 x + 12 cos 4 x =\dfrac{\blue{2}\cos x}{\blue{4}\cancel{\red{-12\cos^4x}}-\blue{2}\cos^2x+ \cancel{\red{12\cos^4x}}} = cos x 2 cos 2 x =\dfrac{\cos x}{2-\cos^2x} 0 π 2 I d x = 0 π 2 cos x d x 2 cos 2 x \Rightarrow \int_0^{\frac{\pi}{2}}Idx=\int_0^{\frac{\pi}{2}}\dfrac{\red{\cos xdx}}{2-\red{\cos^2x}} = 0 π 2 d sin x 2 ( 1 sin 2 x ) =\int_0^{\frac{\pi}{2}}\dfrac{d\sin x}{2-(1-\sin^2x)} = 0 π 2 d sin x 1 + sin 2 x =\int_0^{\frac{\pi}{2}}\dfrac{d\sin x}{1+\sin^2x} = [ arctan ( sin x ) ] 0 π 2 =[\arctan(\sin x)]_0^{\frac{\pi}{2}} = arctan ( sin π 2 ) arctan ( sin 0 ) =\arctan(\sin \frac{\pi}{2})-\arctan(\sin 0) = arctan 1 arctan 0 =\red{\arctan 1}-\blue{\arctan 0} = π 4 0 = 1 4 π = a π =\dfrac{\pi}{4}-0=\red{\dfrac{1}{4}}\pi=\red{a}\pi a = 1 4 = 0.25 \Rightarrow \boxed{a=\dfrac{1}{4}=0.25}

Pi Han Goh
Apr 2, 2021

By expressing all the terms in the denominator in terms of cos ( 2 x ) \cos(2x) , we can simplify the denominator of the integrand to 6 2 cos ( 2 x ) = 6 2 ( 1 2 sin 2 x ) 6 - 2\cos(2x) = 6 - 2(1 - 2\sin^2 x)

Apply the substitution of y = sin x , y = \sin x, the integral breaks down to π 4 . \frac\pi4 .

Charley Shi
Apr 16, 2021

The denominator is equivalent to 12 sin 2 x ( 1 + cos ( 2 x ) 2 cos 2 x ) + 3 ( 1 + cos ( 4 x ) 2 c o s 2 ( 2 x ) ) 2 cos ( 2 x ) = 24 sin 2 x cos 2 x + 6 cos 2 ( 2 x ) 2 cos ( 2 x ) 12\sin^2x\underbrace{(1+\cos(2x)}_{2\cos^2x}) + 3\underbrace{(1+\cos(4x)}_{2cos^2(2x)}) - 2\cos(2x) = 24\sin^2x\cos^2x + 6\cos^2(2x) - 2\cos(2x) = 6 ( 2 sin x cos x sin ( 2 x ) ) 2 + 6 cos 2 ( 2 x ) 2 cos ( 2 x ) = 6(\underbrace{2\sin x\cos x}_{\sin(2x)})^2 + 6\cos^2(2x) - 2\cos(2x) = 6 sin 2 ( 2 x ) + 6 cos 2 ( 2 x ) 2 cos ( 2 x ) = 6\sin^2(2x) + 6\cos^2(2x) - 2\cos(2x) = 6 ( sin 2 ( 2 x ) + 6 cos 2 ( 2 x ) 1 ) 2 cos ( 2 x ) = 6(\underbrace{\sin^2(2x) + 6\cos^2(2x)}_1) - 2\cos(2x) = 6 2 cos ( 2 x ) = 6 - 2\cos(2x) Then, x = 0 π 2 4 cos x 6 2 cos ( 2 x ) d x = x = 0 p i 2 2 cos x 3 ( 1 2 sin 2 x ) d x \int_{x = 0}^{\frac{\pi}{2}} \frac{4\cos x}{6 - 2\cos(2x)} dx= \int_{x = 0}^{\frac{pi}{2}} \frac{2\cos x}{3 - (1 - 2\sin^2x)}dx = x = 0 π 2 2 cos x 2 + 2 sin 2 x d x = \int_{x = 0}^{\frac{\pi}{2}} \frac{2\cos x}{2 + 2\sin^2x} dx = x = 0 π 2 cos x 1 + sin 2 x d x = \int_{x = 0}^{\frac{\pi}{2}} \frac{\cos x}{1 + \sin^2x} dx Let u = sin x u = \sin x so d u = cos x d x du = \cos x dx . u = 0 1 1 1 + u 2 d u = arctan ( 1 ) arctan ( 0 ) = π 4 \int_{u = 0}^{1} \frac{1}{1+u^2} du = \arctan(1) - \arctan(0) = \boxed{\frac{\pi}{4}}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...