Let be all positive numbers satisfying the system of equations above. Find the value of .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
⎩ ⎪ ⎨ ⎪ ⎧ x y − 2 x − y = 1 0 . . . ( 1 ) y z − 3 y − 2 z = 1 4 . . . ( 2 ) z x − z − 3 x = 1 2 . . . ( 3 )
( 1 ) + 2 gives x y − 2 x − y + 2 = 1 2 ⇒ ( x − 1 ) ( y − 2 ) = 1 2 . . . ( 4 ) .
( 2 ) + 6 gives y z − 3 y − 2 z + 6 = 2 0 ⇒ ( y − 2 ) ( z − 3 ) = 2 0 . . . ( 5 ) .
( 3 ) + 3 gives z x − z − 3 x + 3 = 1 5 ⇒ ( z − 3 ) ( x − 1 ) = 1 5 . . . ( 6 ) .
( 4 ) × ( 5 ) × ( 6 ) gives ( x − 1 ) ( y − 2 ) ( z − 3 ) = 6 0 . . . ( 7 ) .
( 7 ) : ( 4 ) gives z = 8 .
( 7 ) : ( 5 ) gives x = 4 .
( 7 ) : ( 6 ) gives y = 6 .
Then, we have ( x + y + z ) 2 + x ² + y ² + z ² = 1 8 ² + 4 ² + 6 ² + 8 ² .
Hence, our final answer is 4 4 0 .
Otherwise, by the system of the equation above, we can find that ( − 2 , − 2 , − 2 ) complete the system that is given. But, since ( x , y , z ) must be positive, we can use this method.