A calculus problem by Nahom Assefa

Calculus Level 3

ln x d x = ? \large \int \ln x \, dx = \ ?

Notation: C C denotes the arbitrary constant of integration .

log x ln x + C \log x \ln x+C x ln x + C x\ln x+C 1 e x ln x + C \frac 1{e^x\ln x}+C x ln x x + C x\ln x-x+C 1 x + C \frac 1x+C x ln x + x + C x\ln x+x+C ( ln x ) e x + C (\ln x)^{e^x}+C e x + C e^x+C

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Samrit Pramanik
Jul 20, 2018

ln x d x \int \ln x\;dx

= ( ln x ) 1 d x =\int (\ln x)\cdot 1\; dx

= ln x 1 d x { d d x ( ln x ) 1 d x } Integrating by parts =\ln x\int 1\;dx-\int\left\{\dfrac{d}{dx}(\ln x)\int 1\; dx\right\}\qquad\qquad {\color{#3D99F6}\text{Integrating by parts}}

= ( ln x ) x 1 x x d x =(\ln x)\cdot x-\int \dfrac{1}{x}\cdot x\;dx

= x ln x x + c =x\ln x-x+c

no im saying let lnx be inverse function not a real real function but you will get the same thing

Nahom Assefa - 2 years, 10 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...