Improper Integral

Calculus Level 3

Evaluate the improper integral

0 1 e x + e x d x . \int_0^\infty \frac{1}{e^x + e^{-x}} \, dx.

π 4 \frac{\pi}{4} π e \frac{\pi}{e} π 2 \frac{\pi}{2} 5 2 e \frac{5}{2e} e 2 \frac{e}{2}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Henry Maltby
Jun 10, 2016

Although the denominator may look simplified, in reality there is a negative exponent in it. Our first step should be to remove that:

0 1 e x + e x d x = 0 1 e x + 1 e x d x = 0 e x e 2 x + 1 d x . \int_0^\infty \frac{1}{e^x + e^{-x}} \, dx = \int_0^\infty \frac{1}{e^x + \tfrac{1}{e^x}} \, dx = \int_0^\infty \frac{e^x}{e^{2x} + 1} \, dx.

Now, it looks like we can group the numerator with the differential d x dx and use a clever u u -substitution to simplify the problem. Choosing u = e x u = e^x (and d u = e x d x du = e^x \, dx ), the problem continues:

0 e x e 2 x + 1 d x = 0 1 e 2 x + 1 e x d x = 1 1 u 2 + 1 d u . \int_0^\infty \frac{e^x}{e^{2x} + 1} \, dx = \int_0^\infty \frac{1}{e^{2x} + 1} \cdot e^x \, dx = \int_1^\infty \frac{1}{u^2 + 1} \, du.

Now, the trigonometric substitution u = tan θ u = \tan\theta (and d u = sec 2 θ d θ du = \sec^2\theta \, d\theta ) allows us to finish the problem:

1 1 u 2 + 1 d u = π / 4 π / 2 1 tan 2 θ + 1 sec 2 θ d θ = π / 4 π / 2 1 s e c 2 θ sec 2 θ d θ = π / 4 π / 2 1 d θ = π 4 . \int_1^\infty \frac{1}{u^2 + 1} \, du = \int_{\pi/4}^{\pi/2} \frac{1}{\tan^2\theta + 1} \cdot \sec^2\theta \, d\theta = \int_{\pi/4}^{\pi/2} \frac{1}{sec^2\theta} \cdot \sec^2\theta \, d\theta = \int_{\pi/4}^{\pi/2} 1 \, d\theta = \boxed{\frac{\pi}{4}.}

Also it can be integrable using the hyperbolic secant function

Banibrata Manna - 10 months, 2 weeks ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...