Any implications?

Find the minimum value of k k so that k k is a composite number but 8 ! + k 8! + k is a prime.

Hint : What is the minimum value of k k if we only consider (partly) that k k is a composite number?

Inspiration.


The answer is 187.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Zach Abueg
Aug 20, 2017

If 8 ! + k 8! + k is prime, k k must be greater than 8 8 and cannot be divisible by any multiples of 2 8 2 \rightarrow 8 ( this problem will illustrate why).

Thus, k k must have prime factors 11 \geq 11 . Testing the combinations of multiplied primes 11 \geq 11 , we quickly find our number:

8 ! + ( 11 × 11 ) = 37 × 1093 composite 8 ! + ( 11 × 13 ) = 43 × 941 composite 8 ! + ( 13 × 13 ) = 19 × 2131 composite 8 ! + ( 11 × 17 ) = 1 × 40507 prime \begin{aligned} 8! + (11 \times 11) & = 37 \times 1093 \rightarrow \text{composite} \\ 8! + (11 \times 13) & = 43 \times 941 \rightarrow \text{composite} \\ 8! + (13 \times 13) & = 19 \times 2131 \rightarrow \text{composite} \\ 8! + (11 \times 17) & = 1 \times 40507 \rightarrow \text{prime} \end{aligned}

Thus, the minimum composite k k is 11 × 17 = 187 11 \times 17 = \boxed{187} .

Great solution!

Steven Jim - 3 years, 9 months ago
Marco Brezzi
Aug 20, 2017

8 ! = 40320 = 2 7 3 2 5 7 8!=40320=2^7\cdot 3^2\cdot 5\cdot 7

Suppose that k k is of the form 2 a 3 b 5 c 7 d n 2^a\cdot 3^b\cdot 5^c\cdot 7^d\cdot n ( a , b , c , d , n N ) (a,b,c,d,n\in\mathbb{N}) with at least one of a , b , c , d a,b,c,d non-zero. Wlog assume a 0 a\neq 0 , then

8 ! + k = 2 ( 20160 + 2 a 1 3 b 5 c 7 d n ) 8!+k=2(20160+2^{a-1}\cdot 3^b\cdot 5^c\cdot 7^d\cdot n)

Which is not prime. With a similar reasoning also non-zero b , c b,c or d d make 8 ! + k 8!+k a composite number. So, according to the second constraint, k k does not containt factors of 2 , 3 , 5 2,3,5 or 7 7 in its prime factorization

We now search for the least possible composite k k that satisfies the second constraint. Proceeding in ascending order:

1 1 2 , 11 13 , 1 3 2 , 11 17 , 13 17 , 11^2,11\cdot 13,13^2,11\cdot 17,13\cdot 17,\ldots


8 ! + 1 1 2 = 40441 = 37 1093 8!+11^2=40441=37\cdot 1093

8 ! + 11 13 = 40463 = 43 941 8!+11\cdot 13=40463=43\cdot 941

8 ! + 1 3 2 = 40489 = 19 2131 8!+13^2=40489=19\cdot 2131

8 ! + 11 17 = 40507 prime 8!+11\cdot 17=40507 \color{#D61F06}\text{ prime}

Hence the least possible k k is

k = 11 17 = 187 k=11\cdot 17=\boxed{187}

Great solution!

Steven Jim - 3 years, 9 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...