Any other method

Calculus Level 4

f ( x ) = sin ( 3 x ) + A sin ( 2 x ) + B sin ( x ) x 5 \large f(x)=\dfrac{\sin(3x)+A\sin(2x)+B \sin (x)}{x^5}

Suppose we define f ( x ) f(x) as above except at the point x = 0 x=0 , if f ( x ) f(x) is continuous at x = 0 x=0 , then find the value of f ( 0 ) f(0) .


Try for some more interesting problems of Limits and Derivatives.


The answer is 1.000.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Method 1, (the long way): Using the identities

sin ( 3 x ) = 3 sin ( x ) 4 sin 3 ( x ) \sin(3x) = 3\sin(x) - 4\sin^{3}(x) and sin ( 2 x ) = 2 sin ( x ) cos ( x ) , \sin(2x) = 2\sin(x)\cos(x),

we can rewrite the given function as

f ( x ) = 3 sin ( x ) 4 sin 3 ( x ) + 2 A sin ( x ) cos ( x ) + B sin ( x ) x 5 = f(x) = \dfrac{3\sin(x) - 4\sin^{3}(x) + 2A\sin(x)\cos(x) + B\sin(x)}{x^{5}} =

sin ( x ) x 3 4 sin 2 ( x ) + 2 A cos ( x ) + B x 4 . \dfrac{\sin(x)}{x} * \dfrac{3 - 4\sin^{2}(x) + 2A\cos(x) + B}{x^{4}}.

Now since we want lim x 0 f ( x ) \lim_{x \rightarrow 0} f(x) to exist, and since lim x 0 sin ( x ) x = 1 , \lim_{x \rightarrow 0} \dfrac{\sin(x)}{x} = 1, we will require that

3 4 sin 2 ( x ) + 2 A cos ( x ) + B = 0 3 - 4\sin^{2}(x) + 2A\cos(x) + B = 0 at x = 0 , x = 0, i.e., that 3 + 2 A + B = 0. 3 + 2A + B = 0.

This will then make g ( x ) = 3 4 sin 2 ( x ) + 2 A cos ( x ) + B x 4 g(x) = \dfrac{3 - 4\sin^{2}(x) + 2A\cos(x) + B}{x^{4}}

indeterminate at x = 0. x = 0. Applying L'Hopital's rule, we have that

lim x 0 3 4 sin 2 ( x ) + 2 A cos ( x ) + B x 4 = \lim_{x \rightarrow 0} \dfrac{3 - 4\sin^{2}(x) + 2A\cos(x) + B}{x^{4}} =

lim x 0 8 sin ( x ) cos ( x ) 2 A sin ( x ) 4 x 3 = \lim_{x \rightarrow 0} \dfrac{-8\sin(x)\cos(x) - 2A\sin(x)}{4x^{3}} =

lim x 0 ( 1 2 sin ( x ) x 4 cos ( x ) + A x 2 ) , \lim_{x \rightarrow 0} \left( -\dfrac{1}{2}*\dfrac{\sin(x)}{x} * \dfrac{4\cos(x) + A}{x^{2}}\right), (i).

Again, since lim x 0 sin ( x ) x = 1 , \lim_{x \rightarrow 0} \dfrac{\sin(x)}{x} = 1, for this limit to exist we will require that 4 cos ( x ) + A = 0 4\cos(x) + A = 0 at x = 0 , x = 0, i.e., that A = 4. A = -4.

This in turn gives us that B = ( 3 + 2 A ) = 5. B = -(3 + 2A) = 5.

To make f ( x ) f(x) continuous at x = 0 , x = 0, we will need to then assign f ( 0 ) f(0) the same value as

lim x 0 sin ( 3 x ) 4 sin ( 2 x ) + 5 sin ( x ) x 5 . \lim_{x \rightarrow 0} \dfrac{\sin(3x) - 4\sin(2x) + 5\sin(x)}{x^{5}}.

To determine this limit, we just need to apply L'Hopital's rule to (i) once more, giving us that

lim x 0 f ( x ) = 1 2 lim x 0 4 cos ( x ) 4 x 2 = \lim_{x \rightarrow 0} f(x) = -\dfrac{1}{2} \lim_{x \rightarrow 0} \dfrac{4\cos(x) - 4}{x^{2}} =

1 2 lim x 0 4 sin ( x ) 2 x = lim x 0 sin ( x ) x = 1. -\dfrac{1}{2} \lim_{x \rightarrow 0} \dfrac{-4\sin(x)}{2x} = \lim_{x \rightarrow 0} \dfrac{\sin(x)}{x} = 1.

Thus we can make f ( x ) f(x) continuous at x = 0 x = 0 if we assign the value f ( 0 ) = 1 . \boxed{f(0) = 1}.

Method 2: Using the series expansion

sin ( x ) = x x 3 3 ! + x 5 5 ! + O ( x 7 ) , \sin(x) = x - \dfrac{x^{3}}{3!} + \dfrac{x^{5}}{5!} + O(x^{7}),

we can rewrite f ( x ) f(x) as

f ( x ) = 1 x 4 ( 3 + 2 A + B ) 1 6 x 2 ( 27 + 8 A + B ) + 1 120 ( 243 + 32 A + B ) + O ( x 2 ) . f(x) = \dfrac{1}{x^{4}}(3 + 2A + B) - \dfrac{1}{6x^{2}}(27 + 8A + B) + \dfrac{1}{120}(243 + 32A + B) + O(x^{2}).

For the limit to exist as x 0 x \rightarrow 0 we must have that

3 + 2 A + B = 0 3 + 2A + B = 0 and that 27 + 8 A + B = 0 27 + 8A + B = 0

24 + 6 A = 0 A = 4 , \Longrightarrow 24 + 6A = 0 \Longrightarrow A = -4, and thus B = ( 3 + 2 A ) = 5. B = -(3 + 2A) = 5.

With these values, we would then have lim x 0 f ( x ) = 1 120 ( 243 + 32 ( 4 ) + 5 ) = 1. \lim_{x \rightarrow 0} f(x) = \dfrac{1}{120}(243 + 32*(-4) + 5) = 1.

Thus, again, to make f ( x ) f(x) continuous at x = 0 x = 0 we must assign f ( 0 ) = 1 . f(0) = \boxed{1}.

Moderator note:

It's better to keep the best possible approach in your solution section alone. Method 2 is the most sensible approach to this problem.

Expansion is much better than this

Rishabh Deep Singh - 5 years, 4 months ago
Chew-Seong Cheong
Feb 20, 2016

My method may be same as that of Rishabh Deep Singh .

Let g ( x ) = sin ( 3 x ) + A sin ( 2 x ) + B sin ( x ) g(x) = \sin(3x)+A\sin(2x)+B \sin (x) , for f ( 0 ) f(0) to be continuous, g ( x ) g(x) must have the form g ( x ) = x 5 h ( x ) g(x) = x^5 h(x) , so that f ( x ) = g ( x ) x 5 = x 5 h ( x ) x 5 = h ( x ) f(x) = \dfrac{g(x)}{x^5} = \dfrac{x^5h(x)}{x^5} = h(x) , which is continuous at x = 0 x=0 .

g ( x ) = sin ( 3 x ) + A sin ( 2 x ) + B sin ( x ) By Maclaurin series = ( 3 x ( 3 x ) 3 3 ! + ( 3 x ) 5 3 ! . . . ) + A ( 2 x ( 2 x ) 3 3 ! + ( 2 x ) 5 3 ! . . . ) + B ( x x 3 3 ! + x 5 3 ! . . . ) = 3 x 27 x 3 3 ! + A ( 2 x 8 x 3 3 ! ) + B ( x x 3 3 ! ) + x 5 ( 3 5 5 ! 3 7 x 2 7 ! + 3 9 x 4 9 ! . . . ) + A x 5 ( 2 5 5 ! 2 7 x 2 7 ! + 2 9 x 4 9 ! . . . ) + B x 5 ( 1 5 ! x 2 7 ! + x 4 9 ! . . . ) \begin{aligned} g(x) & = \sin(3x)+A\sin(2x)+B \sin (x) \quad \quad \small \color{#3D99F6}{\text{By Maclaurin series}} \\ & = \small \left(3x - \frac{(3x)^3}{3!} + \frac{(3x)^5}{3!} -... \right) + A \left(2x - \frac{(2x)^3}{3!} + \frac{(2x)^5}{3!} -... \right) + B \left(x - \frac{x^3}{3!} + \frac{x^5}{3!} -...\right) \\ & = \small \color{#3D99F6}{3x - \frac{27x^3}{3!} + A \left(2x - \frac{8x^3}{3!} \right) + B \left(x - \frac{x^3}{3!} \right)} + x^5\left(\frac{3^5}{5!} - \frac{3^7x^2}{7!} + \frac{3^9x^4}{9!} -... \right) \\ & \quad \quad \small + Ax^5\left(\frac{2^5}{5!} - \frac{2^7x^2}{7!} + \frac{2^9x^4}{9!} -... \right) + Bx^5\left(\frac{1}{5!} - \frac{x^2}{7!} + \frac{x^4}{9!} -... \right) \end{aligned}

To make g ( x ) = x 5 h ( x ) g(x) = x^5h(x) , then: 3 x 27 x 3 3 ! + A ( 2 x 8 x 3 3 ! ) + B ( x x 3 3 ! ) = 0 \small \color{#3D99F6}{3x - \frac{27x^3}{3!} + A \left(2x - \frac{8x^3}{3!} \right) + B \left(x - \frac{x^3}{3!} \right)} = 0 and equating the coefficients, we have:

{ 3 + 2 A + B = 0 27 + 8 A + B = 0 A = 4 , B = 5 \begin{cases} 3 + 2A + B = 0 \\ 27 + 8A + B = 0 \end{cases} \quad \Rightarrow A = -4, \space B = 5

f ( 0 ) = h ( 0 ) = 3 5 5 ! + A 2 5 5 ! + B 1 5 ! = 242 4 × 32 + 5 × 1 5 ! = 120 120 = 1 \begin{aligned} \Rightarrow f(0) & = h(0) \\ & = \frac{3^5}{5!} + A \frac{2^5}{5!} + B \frac{1}{5!} \\ & = \frac{242 - 4\times 32 + 5\times 1}{5!} = \frac{120}{120} = \boxed{1} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...