Interesting Integral

Calculus Level 5

0 π 2 cos 2011 ( x ) sin ( 2013 x ) d x = p q \large \int_0^\frac \pi 2 \cos^{2011} (x) \ \sin (2013x) \ dx = \frac{p}{q}

The equation above holds true for coprime integers p p and q q . Find 2 p + q 2p+q .


The answer is 2014.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

I = 0 π 2 cos 2011 x sin 2013 x d x = 0 π 2 cos 2011 x ( sin x cos 2012 x + cos x sin 2012 x ) d x = 0 π 2 cos 2011 x sin x cos 2012 x d x + 0 π 2 cos 2012 x sin 2012 x d x By integration by parts = cos 2012 x cos 2012 x 2012 0 π 2 0 π 2 cos 2012 x sin 2012 x d x + 0 π 2 cos 2012 x sin 2012 x d x = 1 2012 \begin{aligned} I & = \int_0^\frac \pi 2 \cos^{2011}x \sin 2013 x \ dx \\ & = \int_0^\frac \pi 2 \cos^{2011}x (\sin x \cos 2012 x + \cos x \sin 2012 x ) \ dx \\ & = {\color{#3D99F6} \int_0^\frac \pi 2 \cos^{2011}x \sin x \cos 2012 x dx} + \int_0^\frac \pi 2 \cos^{2012} x \sin 2012 x \ dx & \small \color{#3D99F6} \text{By integration by parts} \\ & = {\color{#3D99F6} - \frac {\cos^{2012}x \cos 2012 x}{2012} \bigg|_0^\frac \pi 2 - \int_0^\frac \pi 2 \cos^{2012} x \sin 2012 x \ dx } + \int_0^\frac \pi 2 \cos^{2012} x \sin 2012 x \ dx \\ & = \frac 1{2012} \end{aligned}

2 p + q = 2 + 2012 = 2014 \implies 2p + q = 2+2012 = \boxed{2014}


Generalization: 0 π 2 cos n x sin ( n + 2 ) x d x = 1 n + 1 \displaystyle \int_0^\frac \pi 2 \cos^n x \sin (n+2)x \ dx = \dfrac 1{n+1}

Thanks sir for such a beautifully described solution.

Aman Joshi - 3 years, 7 months ago

Log in to reply

You are welcome

Chew-Seong Cheong - 3 years, 7 months ago

Log in to reply

Sir please try my first problem: @ever seen them like this.

Aman Joshi - 3 years, 7 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...