Any Synthetic Solution?

Geometry Level 4

Triangle A B C ABC with circumcircle ω \omega has tangents l 1 , l 2 , l_1, l_2, and l 3 l_3 at A , B , A, B, and C , C, respectively.

Let the intersection points of the three tangents be l 2 l 3 = D , l 1 l 3 = E , l 1 l 2 = F . l_2 \cap l_3 = D, \quad l_1 \cap l_3 = E, \quad l_1 \cap l_2 = F. Also, let the point where D F DF and A C AC intersect be Q , Q, and let E Q B C = S EQ \cap BC = S and E F B C = T . EF \cap BC = T.

If A C = 2 A B , |AC| = 2|AB|, and V V is defined as V = S T B C , V = \dfrac{|ST|}{|BC|}, what is 300 V ? 300V ?


The answer is 200.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Daniel Stewart
Jul 31, 2016

I used barycentric coordinates. We get E = ( a 2 : b 2 : c 2 ) E = (a^{2} : -b^{2} : c^{2}) , Q = ( a 2 : 0 : c 2 ) Q = (a^{2} : 0 : -c^{2}) . Then E Q EQ has equation b 2 c 2 x + 2 a 2 c 2 y + a 2 b 2 z = 0 b^{2}c^{2}x + 2a^{2}c^{2}y + a^{2}b^{2}z = 0 . Intersecting this with the line x = 0 x = 0 , we get S = ( 0 : b 2 : 2 c 2 ) S = (0 : -b^{2} : 2c^{2}) . We also get T = ( 0 : b 2 : c 2 ) T = (0 : -b^{2} : c^{2}) . We then normalize S S and T T , and proceed to obtain S T = ( 0 , b 2 c 2 b 2 b 2 2 c 2 b 2 , 2 c 2 2 c 2 b 2 c 2 c 2 b 2 ) \vec{ST} = (0, \frac{b^{2}}{c^{2} - b^{2}} - \frac{b^{2}}{2c^{2} - b^{2}}, \frac{2c^{2}}{2c^{2} - b^{2}} - \frac{c^{2}}{c^{2} - b^{2}}) . We then apply the distance formula for displacement vector S T \vec{ST} . This gives S T 2 = a 2 b 4 c 4 ( 1 c 2 b 2 1 2 c 2 b 2 ) ( 2 2 c 2 b 2 1 c 2 b 2 ) = a 2 b 4 c 4 ( 1 ( c 2 b 2 ) ( 2 c 2 b 2 ) ) 2 S T B C = b 2 c 2 ( 1 ( c 2 b 2 ) ( 2 c 2 b 2 ) ) |\vec{ST}|^{2} = -a^{2}b^{4}c^{4}\left( \frac{1}{c^{2} -b^{2}} - \frac{1}{2c^{2} - b^{2}}\right) \left( \frac{2}{2c^{2} - b^{2}} - \frac{1}{c^{2} - b^{2}} \right) = a^{2}b^{4}c^{4}\left( \frac{1}{(c^{2} - b^{2})(2c^{2} - b^{2})} \right)^{2} \implies \\ \frac{|\vec{ST}|}{|BC|} = b^{2}c^{2}\left( \frac{1}{(c^{2} - b^{2})(2c^{2} - b^{2})} \right) . Substituting b = 2 c b = 2c gives the desired value is 4 c 4 ( 3 c 2 ) ( 2 c 2 ) = 2 3 \\ \frac{4c^{4}}{(-3c^{2})(-2c^{2})} = \frac{2}{3} , so the answer is 300 2 3 300 \cdot \frac{2}{3} or 200 \boxed{200} . Let me know if there is any error.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...