Any triangle must satisfy

Algebra Level 5

x y x + y + y z y + z + z x z + x \left | \dfrac{x-y}{x+y} + \dfrac{y-z}{y+z} + \dfrac{z-x}{z+x} \right |

Let x x , y y and z z be sides of a triangle. If the supremum value of the above expression can be written as a b c d e \dfrac{a\sqrt{b}-c\sqrt{d}}{e} , where a , b , c , d , e a,b,c,d,e are positive integers with b b and d d square-free, and the fraction is reduced to its lowest terms, find a + b + c + d + e a+b+c+d+e .


The answer is 23.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Mark Hennings
May 2, 2017

This problem was originally published in Crux Mathematicorum in 1986.

If we define S = S ( x , y , z ) = y z y + z + x y x + y + z x z + x = ( y z ) ( x y ) ( x z ) ( y + z ) ( x + y ) ( x + z ) S \; = \; S(x,y,z) \; = \; \frac{y-z}{y+z} + \frac{x-y}{x+y} + \frac{z-x}{z+x} \; = \; \frac{(y-z)(x-y)(x-z)}{(y+z)(x+y)(x+z)} then S S is a antisymmetric function of x , y , z x,y,z , so that (to determine the supremum of S |S| ), it is sufficient to restrict attention to the case x y z x \ge y \ge z , when S 0 S \ge 0 . If we write p = y z 0 q = x y 0 r = y + z x > 0 p \; = \; y - z \ge 0 \qquad q \; = \; x - y \ge 0 \qquad r \; = \; y + z - x > 0 then S = F ( p , q , r ) = p q ( p + q ) ( p + 2 q + 2 r ) ( 2 p + 3 q + 2 r ) ( p + 3 q + 2 r ) S \; = \; F(p,q,r) \; = \; \frac{pq(p+q)}{(p+2q+2r)(2p+3q+2r)(p+3q+2r)} and we are interested in finding the supremum of F ( p , q , r ) F(p,q,r) for p , q 0 p,q \ge 0 and r > 0 r > 0 . Since F ( 0 , q , r ) = F ( p , 0 , r ) = 0 F(0,q,r) = F(p,0,r)= 0 , we might as well find the supremum of F ( p , q , r ) F(p,q,r) for p , q , r > 0 p,q,r > 0 . Since F ( p , q , r ) F(p,q,r) is homogeneous in p , q , r p,q,r , we may assume without loss of generality that q = 1 q=1 , and it is clear that F ( p , 1 , r ) F ( p , 1 , 0 ) = lim r 1 F ( p , 1 , r ) = p ( p + 1 ) ( p + 2 ) ( 2 p + 3 ) ( p + 3 ) F(p,1,r) \; \le \; F(p,1,0) \; = \; \lim_{r \to 1-}F(p,1,r) \; = \; \frac{p(p+1)}{(p+2)(2p+3)(p+3)} Looking for turning points, we have d d p F ( p , 1 , 0 ) = 2 p 4 + 2 p 3 7 p 2 18 p 9 ( p + 2 ) 2 ( p + 3 ) 2 ( 2 p + 3 ) 2 \frac{d}{dp}F(p,1,0) \; = \; -2 \frac{p^4 + 2p^3 - 7p^2 - 18p - 9}{(p + 2)^2 (p + 3)^2 (2p + 3)^2} Thus we need to solve p 4 + 2 p 3 7 p 2 18 p 9 = 0 ( p 2 + p + 1 ) 2 = 10 ( p + 1 ) 2 [ p 2 + ( 1 + 10 ) p + 1 + 10 ] [ p 2 + ( 1 10 ) p + 1 10 ] = 0 p 2 + ( 1 + 10 ) p + 1 + 10 = 0 or p 2 + ( 1 10 ) p + 1 10 ] = 0 \begin{aligned} p^4 + 2p^3 - 7p^2 - 18p - 9 & = 0 \\ (p^2 + p + 1)^2 & = 10(p + 1)^2 \\ \big[p^2 + (1 + \sqrt{10})p + 1 + \sqrt{10}\big]\big[p^2 + (1 - \sqrt{10})p + 1 - \sqrt{10}\big] & = 0 \\ p^2 + (1 + \sqrt{10})p + 1 + \sqrt{10} \; = \; 0 \qquad \text{or} \qquad & p^2 + (1 - \sqrt{10})p + 1 - \sqrt{10}\big] \;=\; 0 \end{aligned} The first of these quadratics has no positive roots, and so, solving the second, we obtain ( p + 1 2 ( 1 10 ) ) 2 = 1 4 ( 7 + 2 10 ) = 1 4 ( 2 + 5 ) 2 p = 1 2 ( 1 ± 2 ) ( 1 ± 5 ) 1 \begin{aligned} \big(p + \tfrac12(1 - \sqrt{10})\big)^2 & = \; \tfrac14(7 + 2\sqrt{10}) \; = \; \tfrac14(\sqrt{2} + \sqrt{5})^2 \\ p & = \tfrac12(1 \pm \sqrt{2})(1 \pm \sqrt{5}) - 1 \end{aligned} Since we want the positive root, we deduce that p = 1 2 ( 1 + 2 ) ( 1 + 5 ) 1 p \; = \; \tfrac12(1 + \sqrt{2})(1 + \sqrt{5}) - 1 Thus we deduce that S F ( p , 1 , 0 ) F ( 1 2 ( 1 + 2 ) ( 1 + 5 ) 1 , 1 , 0 ) = 8 2 5 5 3 S \; \le \; F(p,1,0) \; \le \; F\big(\tfrac12(1 + \sqrt{2})(1 + \sqrt{5}) - 1,1,0) \; = \; \frac{8\sqrt{2} - 5\sqrt{5}}{3} making the answer 8 + 2 + 5 + 5 + 3 = 23 8+2+5+5+3 = \boxed{23} .

in which university do you teach sir ? @Mark Hennings

A Former Brilliant Member - 4 years, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...