Anyone going to help me expand?

Algebra Level 3

If the value of

( 1 + 1 2 + 1 3 + + 1 2014 ) ( 1 2 + 1 3 + 1 4 + + 1 2015 ) \left(1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{2014}\right)\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\cdots+\frac{1}{2015}\right) ( 1 + 1 2 + 1 3 + + 1 2015 ) ( 1 2 + 1 3 + 1 4 + + 1 2014 ) -\left(1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{2015}\right)\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\cdots+\frac{1}{2014}\right)

is a b \frac{a}{b} for relatively prime a a and b b , then the value of a + b a+b is

2015 2013 2014 2016

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

5 solutions

Let x = 1 + 1 2 + 1 3 + . . . + 1 2014 x = 1 + \frac{1}{2} + \frac{1}{3} + ... + \frac{1}{2014} and y = x + 1 2015 y = x + \frac{1}{2015} .

Then the expression becomes

x ( y 1 ) y ( x 1 ) = y x = 1 2015 x*(y - 1) - y*(x - 1) = y - x = \frac{1}{2015} .

Thus a = 1 , b = 2015 a = 1, b = 2015 and a + b = 2016 a + b = \boxed{2016} .

nice solution, very clear thanks

Mardokay Mosazghi - 6 years, 9 months ago

same , but i let y= 1 / 2 + 1 / 3 + 1 / 4 + . . . . . . . . + 1 / 2015 1/2+1/3+1/4+........+1/2015

math man - 6 years, 9 months ago

Log in to reply

i too did same

Rishabh Jain - 6 years, 9 months ago

why u are substituting 1 from y,x ? means, why (y-1),(x-1)

Roskstar Rudra - 6 years, 9 months ago

awsome solution

Saptakatha Adak - 6 years, 8 months ago

great one :)

Eve Gayle Garcia - 6 years, 8 months ago

Well done, crisp and clear solution!

sandeep reddy - 6 years, 7 months ago
Jack Mamati
Oct 14, 2014

Here's my solution.

Let x = 1 2 + 1 3 + 1 4 + . . . + 1 2014 x=\frac {1}{2} +\frac{1}{3} +\frac{1}{4}+...+ \frac{1}{2014}

The expression will become

( 1 + x ) ( x + 1 2015 ) ( 1 + x + 1 2015 ) ( x ) (1+x)(x+\frac{1}{2015})-(1+x+\frac{1}{2015} )(x)

= x 2 + x + x 2015 + 1 2015 x x 2 x 2015 =x^2+x+\frac{x}{2015}+\frac{1}{2015}-x-x^2-\frac{x}{2015}

= 1 2015 = a b =\frac{1}{2015}=\frac{a}{b}

a + b = 2016 a+b=2016 (answer)

Sriharsha Dv
Sep 18, 2014

But 2015 is not a prime number(divisible by 5)

If two numbers are " relatively prime ", then there is no positive integers other than 1 that can divide both numbers

Kenny Lau - 6 years, 8 months ago
Rohit Sachdeva
Sep 12, 2014

I too did similarly..

1 2 + 1 3 + . . . 1 2014 = x \frac{1}{2}+\frac{1}{3}+...\frac{1}{2014}=x

a n d 1 2015 = y and \frac{1}{2015}=y

Then expression becomes:

( 1 + x ) ( x + y ) x ( 1 + x + y ) (1+x)(x+y)-x(1+x+y)

= y =y

So a=1 & b=2015; a+b=2016

This is my solution:

Let x = 1/2 +1/3 + 1/4 +...+1/2014

then the equation becomes,

(1 + x)(x + 1/2015) - (2016/2015 + x)(x) = a/b

x^2 + x + x/2015 + 1/2015 - (2016x/2015 + x^2) = a/b

x^2 + 2016x/2015 + 1/2015 - 2016x/2015 - x^2 = a/b

1/2015 = a/b

therefore, a = 1, b = 2015...

a + b = 1 + 2015 = 2016

Mark Angelo Sibayan - 6 years, 8 months ago
William Isoroku
Nov 20, 2014

Substituting a=(1/2+1/3+....... 1/2015) and b=(1/2+1/2+.......1/2014) the expression becomes (1+b)a-(1+a)b which simplifies to a-b. Since a=b+1/2015, a-b=1/2015. 1+2015=2016.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...