A.O.D and integration is all you need

Calculus Level 5

Consider a function f ( x ) = ln ( 1 + sin x ) f(x) = \ln(1+\sin x) , where x x lies between 2 π 1 \dfrac {-2\pi}{1} and 2 π 1 \dfrac{2\pi}{1} . Find:

  • a = a = sum of zeroes of f ( x ) f(x)
  • b = b = sum of abcissae of inflection points (if any) of f ( x ) f(x)
  • c = c = number of maxima and minima
  • d = d = number of asymptotes of f ( x ) f(x)
  • e = 1 π π 2 π 2 f ( x ) d x \displaystyle e = \frac 1\pi \int_{-\frac \pi 2}^\frac \pi 2 f(x) \ dx

Enter your answer as a + b + c + d + e a+b+c+d+e .


The answer is 3.307.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Guilherme Niedu
Sep 29, 2017

Calculation of a :

ln ( 1 + sin ( x ) ) = 0 \large \displaystyle \ln(1 + \sin(x)) = 0

1 + sin ( x ) = 1 \large \displaystyle 1 + \sin(x) = 1

sin ( x ) = 0 \large \displaystyle \sin(x) = 0

In the given interval:

x = 2 π , x = π , x = 0 , x = π , x = 2 π \large \displaystyle x = -2\pi, x= -\pi, x = 0, x = \pi, x = 2\pi

Actually, since sin ( x ) \sin(x) is odd, we don't even have to calculate the zeroes to know that their sum is 0 0 . So:

a = 0 \color{#20A900} \boxed{\large \displaystyle a = 0}


Calculation of b :

f ( x ) = cos ( x ) 1 + sin ( x ) \large \displaystyle f'(x) = \frac{\cos(x)}{1 + \sin(x)}

f ( x ) = 1 + sin ( x ) [ 1 + sin ( x ) ] 2 \large \displaystyle f''(x) = - \frac{1 + \sin(x)}{[1 + \sin(x)]^2}

f ( x ) = 1 1 + sin ( x ) \large \displaystyle f''(x) = - \frac{1}{1 + \sin(x)}

Inflection points are points where f ( x ) = 0 f''(x) =0 . By f ( x ) f''(x) , above, there aren't any. So:

b = 0 \color{#20A900} \boxed{\large \displaystyle b = 0}


Calculation of c :

f ( x ) = cos ( x ) 1 + sin ( x ) = 0 \large \displaystyle f'(x) = \frac{\cos(x)}{1 + \sin(x)} = 0

cos ( x ) = 0 \large \displaystyle \cos(x) = 0 while 1 + sin ( x ) 0 \large \displaystyle 1 + \sin(x) \neq 0

In the given interval:

x = π 2 , x = 3 π 2 \large \displaystyle x = \frac{\pi}{2}, x = - \frac{3\pi}{2}

So:

c = 2 \color{#20A900} \boxed{\large \displaystyle c = 2}


Calculation of d :

Since 1 + sin ( x ) 1 + \sin(x) is bounded between 0 0 and 2 2 , the only way to make f ( x ) f(x) go to \infty or -\infty for finite values of x x (which is the definition of an asymptote) is to make:

1 + sin ( x ) = 0 \large \displaystyle 1 + \sin(x) = 0

Which will make the argument of ln \ln go to 0 0 , i.e., f ( x ) f(x) go to -\infty

sin ( x ) = 1 \large \displaystyle \sin(x) = -1

In the given interval:

x = π 2 , x = 3 π 2 \large \displaystyle x = -\frac{\pi}{2}, x = \frac{3\pi}{2}

So:

d = 2 \color{#20A900} \boxed{\large \displaystyle d = 2}


Calculation of e :

e = 1 π π 2 π 2 ln ( 1 + sin ( x ) ) d x \large \displaystyle e = \frac{1}{\pi} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \ln(1 + \sin(x)) dx

e = 1 π [ 1 2 ( π 2 π 2 ln ( 1 + sin ( x ) ) d x + π 2 π 2 ln ( 1 + sin ( π / 2 π / 2 x ) ) d x ) ] \large \displaystyle e = \frac{1}{\pi} \left [ \frac{1}{2} \left ( \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \ln(1 + \sin(x)) dx + \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \ln(1 + \sin(\pi/2 - \pi/2 - x)) dx \right ) \right ]

e = 1 π [ 1 2 ( π 2 π 2 ln ( 1 + sin ( x ) ) d x + π 2 π 2 ln ( 1 sin ( x ) ) d x ) ] \large \displaystyle e = \frac{1}{\pi} \left [ \frac{1}{2} \left ( \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \ln(1 + \sin(x)) dx + \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \ln(1 - \sin(x)) dx \right ) \right ]

e = 1 π [ 1 2 ( π 2 π 2 ln [ ( 1 + sin ( x ) ) ( 1 sin ( x ) ) ] d x ) ] \large \displaystyle e = \frac{1}{\pi} \left [ \frac{1}{2} \left ( \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \ln[(1 + \sin(x))\cdot(1 - \sin(x))] dx \right ) \right ]

e = 1 π [ 1 2 ( π 2 π 2 ln ( cos 2 ( x ) ) d x ) ] \large \displaystyle e = \frac{1}{\pi} \left [ \frac{1}{2} \left ( \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \ln(\cos^2(x)) dx \right ) \right ]

e = 1 π π 2 π 2 ln ( cos ( x ) ) d x \large \displaystyle e = \frac{1}{\pi} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \ln(\cos(x)) dx

Since ln ( cos ( x ) ) \ln(\cos(x)) is even:

e = 2 π 0 π 2 ln ( cos ( x ) ) d x \large \displaystyle e = \frac{2}{\pi} \int_{0}^{\frac{\pi}{2}} \ln(\cos(x)) dx

Make u = π 2 x u = \frac{\pi}{2} - x :

e = 2 π 0 π 2 ln ( sin ( u ) ) d u \large \displaystyle e = \frac{2}{\pi} \int_{0}^{\frac{\pi}{2}} \ln(\sin(u)) du

e = 2 π 0 π 2 ln ( 2 sin ( u / 2 ) cos ( u / 2 ) ) d u \large \displaystyle e = \frac{2}{\pi} \int_{0}^{\frac{\pi}{2}} \ln(2 \sin(u/2) \cos(u/2)) du

e = 2 π [ π ln ( 2 ) 2 + 0 π 2 ln ( sin ( u / 2 ) ) d u + 0 π 2 ln ( cos ( u / 2 ) ) d u ] \large \displaystyle e = \frac{2}{\pi} \left [ \frac{\pi \ln(2)}{2} + \int_{0}^{\frac{\pi}{2}} \ln(\sin(u/2))du + \int_{0}^{\frac{\pi}{2}} \ln(\cos(u/2))du \right ]

Make t = u / 2 t = u/2 on both integrals:

e = 2 π [ π ln ( 2 ) 2 + 2 0 π 4 ln ( sin ( t ) ) d t + 2 0 π 4 ln ( cos ( t ) ) d t ] \large \displaystyle e = \frac{2}{\pi} \left [ \frac{\pi \ln(2)}{2} + 2 \int_{0}^{\frac{\pi}{4}} \ln(\sin(t))dt + 2 \int_{0}^{\frac{\pi}{4}} \ln(\cos(t))dt \right ]

On first integral, make v = π / 2 t v = \pi/2 - t :

e = 2 π [ π ln ( 2 ) 2 2 π 2 π 4 ln ( cos ( π / 2 v ) ) d v + 2 0 π 4 ln ( cos ( t ) ) d t ] \large \displaystyle e = \frac{2}{\pi} \left [ \frac{\pi \ln(2)}{2} - 2 \int_{\frac{\pi}{2}}^{\frac{\pi}{4}} \ln(\cos(\pi/2 - v))dv + 2 \int_{0}^{\frac{\pi}{4}} \ln(\cos(t))dt \right ]

e = 2 π [ π ln ( 2 ) 2 + 2 π 4 π 2 ln ( sin ( v ) ) d v + 2 0 π 4 ln ( cos ( t ) ) d t ] \large \displaystyle e = \frac{2}{\pi} \left [ \frac{\pi \ln(2)}{2} + 2 \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \ln(\sin(v))dv + 2 \int_{0}^{\frac{\pi}{4}} \ln(\cos(t))dt \right ]

e = 2 π [ π ln ( 2 ) 2 + 2 0 π 2 ln ( sin ( x ) ) d x ] \large \displaystyle e = \frac{2}{\pi} \left [ \frac{\pi \ln(2)}{2} + 2 \int_{0}^{\frac{\pi}{2}} \ln(\sin(x))dx \right ]

e = ln ( 2 ) + 4 π 0 π 2 ln ( sin ( x ) ) d x \large \displaystyle e = \ln(2) + \frac{4}{\pi} \int_{0}^{\frac{\pi}{2}} \ln(\sin(x))dx

e = ln ( 2 ) + 2 e \large \displaystyle e = \ln(2) + 2e

e = ln ( 2 ) \color{#20A900} \boxed{\large \displaystyle e = -\ln(2)}

Thus:

a + b + c + d + e = 4 ln ( 2 ) 3.307 \color{#3D99F6} \boxed{\large \displaystyle a + b + c + d + e = 4 - \ln(2) \approx 3.307}

Rahul Singh
Sep 29, 2017
  • zeroes of f(x) can be easily seen as when sinx=0..hence sum of zeroes = 0.
  • there aren't any inflection points for f(x),
  • maxima at x = π 2 \frac{\pi}{2} and 3 π 2 \frac{-3\pi}{2} and no minima
  • asymptotes at x = π 2 \frac{-\pi}{2} and 3 π 2 \frac{3\pi}{2}
  • def. integral has value = π l n 4 2 \frac{-\pi*ln4}{2}

So how does this all add up to 3.307 ? -2.177/pi + 2 + 2

Vijay Simha - 3 years, 8 months ago

Log in to reply

u can calculate it easily i guess

rahul singh - 3 years, 8 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...