Consider a function f ( x ) = ln ( 1 + sin x ) , where x lies between 1 − 2 π and 1 2 π . Find:
Enter your answer as a + b + c + d + e .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
So how does this all add up to 3.307 ? -2.177/pi + 2 + 2
Problem Loading...
Note Loading...
Set Loading...
Calculation of a :
ln ( 1 + sin ( x ) ) = 0
1 + sin ( x ) = 1
sin ( x ) = 0
In the given interval:
x = − 2 π , x = − π , x = 0 , x = π , x = 2 π
Actually, since sin ( x ) is odd, we don't even have to calculate the zeroes to know that their sum is 0 . So:
a = 0
Calculation of b :
f ′ ( x ) = 1 + sin ( x ) cos ( x )
f ′ ′ ( x ) = − [ 1 + sin ( x ) ] 2 1 + sin ( x )
f ′ ′ ( x ) = − 1 + sin ( x ) 1
Inflection points are points where f ′ ′ ( x ) = 0 . By f ′ ′ ( x ) , above, there aren't any. So:
b = 0
Calculation of c :
f ′ ( x ) = 1 + sin ( x ) cos ( x ) = 0
cos ( x ) = 0 while 1 + sin ( x ) = 0
In the given interval:
x = 2 π , x = − 2 3 π
So:
c = 2
Calculation of d :
Since 1 + sin ( x ) is bounded between 0 and 2 , the only way to make f ( x ) go to ∞ or − ∞ for finite values of x (which is the definition of an asymptote) is to make:
1 + sin ( x ) = 0
Which will make the argument of ln go to 0 , i.e., f ( x ) go to − ∞
sin ( x ) = − 1
In the given interval:
x = − 2 π , x = 2 3 π
So:
d = 2
Calculation of e :
e = π 1 ∫ − 2 π 2 π ln ( 1 + sin ( x ) ) d x
e = π 1 ⎣ ⎡ 2 1 ⎝ ⎛ ∫ − 2 π 2 π ln ( 1 + sin ( x ) ) d x + ∫ − 2 π 2 π ln ( 1 + sin ( π / 2 − π / 2 − x ) ) d x ⎠ ⎞ ⎦ ⎤
e = π 1 ⎣ ⎡ 2 1 ⎝ ⎛ ∫ − 2 π 2 π ln ( 1 + sin ( x ) ) d x + ∫ − 2 π 2 π ln ( 1 − sin ( x ) ) d x ⎠ ⎞ ⎦ ⎤
e = π 1 ⎣ ⎡ 2 1 ⎝ ⎛ ∫ − 2 π 2 π ln [ ( 1 + sin ( x ) ) ⋅ ( 1 − sin ( x ) ) ] d x ⎠ ⎞ ⎦ ⎤
e = π 1 ⎣ ⎡ 2 1 ⎝ ⎛ ∫ − 2 π 2 π ln ( cos 2 ( x ) ) d x ⎠ ⎞ ⎦ ⎤
e = π 1 ∫ − 2 π 2 π ln ( cos ( x ) ) d x
Since ln ( cos ( x ) ) is even:
e = π 2 ∫ 0 2 π ln ( cos ( x ) ) d x
Make u = 2 π − x :
e = π 2 ∫ 0 2 π ln ( sin ( u ) ) d u
e = π 2 ∫ 0 2 π ln ( 2 sin ( u / 2 ) cos ( u / 2 ) ) d u
e = π 2 [ 2 π ln ( 2 ) + ∫ 0 2 π ln ( sin ( u / 2 ) ) d u + ∫ 0 2 π ln ( cos ( u / 2 ) ) d u ]
Make t = u / 2 on both integrals:
e = π 2 [ 2 π ln ( 2 ) + 2 ∫ 0 4 π ln ( sin ( t ) ) d t + 2 ∫ 0 4 π ln ( cos ( t ) ) d t ]
On first integral, make v = π / 2 − t :
e = π 2 ⎣ ⎡ 2 π ln ( 2 ) − 2 ∫ 2 π 4 π ln ( cos ( π / 2 − v ) ) d v + 2 ∫ 0 4 π ln ( cos ( t ) ) d t ⎦ ⎤
e = π 2 ⎣ ⎡ 2 π ln ( 2 ) + 2 ∫ 4 π 2 π ln ( sin ( v ) ) d v + 2 ∫ 0 4 π ln ( cos ( t ) ) d t ⎦ ⎤
e = π 2 [ 2 π ln ( 2 ) + 2 ∫ 0 2 π ln ( sin ( x ) ) d x ]
e = ln ( 2 ) + π 4 ∫ 0 2 π ln ( sin ( x ) ) d x
e = ln ( 2 ) + 2 e
e = − ln ( 2 )
Thus:
a + b + c + d + e = 4 − ln ( 2 ) ≈ 3 . 3 0 7