AP in angles!

Geometry Level 3

If α , β , γ \alpha ,\beta ,\gamma are in an arithmetic progression then the value of cot β \cot\beta is:

s i n α s i n γ 2 ( c o s γ c o s α ) \cfrac { sin\alpha -sin\gamma }{ 2(cos\gamma -cos\alpha ) } s i n α s i n γ c o s γ c o s α \cfrac { sin\alpha -sin\gamma }{ cos\gamma -cos\alpha } ( s i n γ s i n α ) ( c o s γ c o s α ) \cfrac { (sin\gamma -sin\alpha ) }{ (cos\gamma -cos\alpha ) } 2 ( s i n γ s i n α ) ( c o s γ c o s α ) \cfrac { 2(sin\gamma -sin\alpha ) }{ (cos\gamma -cos\alpha ) }

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Deepak Kumar
Jan 26, 2016

Take angles as 30,45 and 60 to make it easy to eliminate wrong options!

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...