Let , , , and be distinct numbers such that the , , , and terms of an arithmetic progression follow a geometric progression .
What do the numbers , , and follow?
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Let first term and common difference of this A.P. are a and d respectively.So,
t p = a + ( p − 1 ) d ; t q = a + ( q − 1 ) d ; t r = a + ( r − 1 ) d ; t s = a + ( s − 1 ) d .
According to the question t p , t q , t r , t s form a G.P.Let common ratio is m
Then, t q t r = t p t s ⟹ t p t q = t r t s ⟹ a + ( p − 1 ) d a + ( q − 1 ) d = a + ( r − 1 ) d a + ( s − 1 ) d
Using properties of fraction:-
a + ( p − 1 ) d a + ( q − 1 ) d − a − ( p − 1 ) d = a + ( r − 1 ) d a + ( s − 1 ) d − a − ( r − 1 ) d
a + ( p − 1 ) d q − p = a + ( r − 1 ) d s − r ⟹ a + ( p − 1 ) d p − q = a + ( r − 1 ) d r − s ⟹ p − q r − s = t p t r = m 2 ⟹ ( r − s ) = m 2 ( p − q )
Again re-arrange the fraction : t s t q = t r t p ⟹ t s t q − t s = t r t p − t r ⟹ t s q − s = t r p − r ⟹ p − r q − s = t r t s ⟹ p − r q − s = m ⟹ q − s = m ( p − r ) ⟹ ( q − s ) = m ( p − q + q − r ) ⟹ ( q − r ) + ( r − s ) = m ( p − q ) + m ( q − r ) ⟹ ( q − r ) + m 2 ( p − q ) = m ( p − q ) + m ( q − r ) . . . . . . . . from the first derivation ⟹ ( q − r ) ( m − 1 ) = m ( p − q ) ( m − 1 ) ⟹ ( q − r ) = m ( p − q ) . . . . . . . . . . as m is not equal to 1
So, our final results are ( r − s ) = m 2 ( p − q ) and ( q − r ) = m ( p − q )
From above two results it is concluded that p − q , q − r , r − s are in G.P.