AP in GP or GP in AP?

Algebra Level 5

Let p p , q q , r r , and s s be distinct numbers such that the p th p^\text{th} , q th q^\text{th} , r th r^\text{th} , and s th s^\text{th} terms of an arithmetic progression follow a geometric progression .

What do the numbers p q p-q , q r q-r , and r s r-s follow?

None of the others Geometric progression Arithmetic geometric progression Harmonic progression Arithmetic progression

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Kushal Bose
Dec 17, 2016

Let first term and common difference of this A.P. are a a and d d respectively.So,

t p = a + ( p 1 ) d ; t q = a + ( q 1 ) d ; t r = a + ( r 1 ) d ; t s = a + ( s 1 ) d t_p=a+(p-1)d\,\,;t_q=a+(q-1)d\,\,;t_r=a+(r-1)d\,\,;t_s=a+(s-1)d .

According to the question t p , t q , t r , t s t_p,t_q,t_r,t_s form a G.P.Let common ratio is m m

Then, t q t r = t p t s t q t p = t s t r a + ( q 1 ) d a + ( p 1 ) d = a + ( s 1 ) d a + ( r 1 ) d t_q t_r=t_p t_s \implies \dfrac{t_q}{t_p}=\dfrac{t_s}{t_r} \\ \implies \dfrac{a+(q-1)d}{a+(p-1)d}=\dfrac{a+(s-1)d}{a+(r-1)d}

Using properties of fraction:-

a + ( q 1 ) d a ( p 1 ) d a + ( p 1 ) d = a + ( s 1 ) d a ( r 1 ) d a + ( r 1 ) d \dfrac{a+(q-1)d-a-(p-1)d}{a+(p-1)d}=\dfrac{a+(s-1)d-a-(r-1)d}{a+(r-1)d}

q p a + ( p 1 ) d = s r a + ( r 1 ) d p q a + ( p 1 ) d = r s a + ( r 1 ) d r s p q = t r t p = m 2 ( r s ) = m 2 ( p q ) \dfrac{q-p}{a+(p-1)d}=\dfrac{s-r}{a+(r-1)d} \implies\dfrac{p-q}{a+(p-1)d}=\dfrac{r-s}{a+(r-1)d} \implies \dfrac{r-s}{p-q}=\dfrac{t_r}{t_p}=m^2\\ \implies (r-s)=m^2 (p-q)

Again re-arrange the fraction : t q t s = t p t r t q t s t s = t p t r t r q s t s = p r t r q s p r = t s t r q s p r = m q s = m ( p r ) ( q s ) = m ( p q + q r ) ( q r ) + ( r s ) = m ( p q ) + m ( q r ) ( q r ) + m 2 ( p q ) = m ( p q ) + m ( q r ) . . . . . . . . from the first derivation ( q r ) ( m 1 ) = m ( p q ) ( m 1 ) ( q r ) = m ( p q ) . . . . . . . . . . as m is not equal to 1 \dfrac{t_q}{t_s}=\dfrac{t_p}{t_r} \implies \dfrac{t_q-t_s}{t_s}=\dfrac{t_p-t_r}{t_r} \implies \dfrac{q-s}{t_s}=\dfrac{p-r}{t_r} \\ \implies \dfrac{q-s}{p-r}=\dfrac{t_s}{t_r} \\ \implies \dfrac{q-s}{p-r}=m \\ \implies q-s=m(p-r) \\ \implies (q-s)=m(p-q+q-r) \\ \implies (q-r)+(r-s)=m(p-q)+m(q-r) \\ \implies (q-r) + m^2(p-q)=m(p-q)+m(q-r) ........\text{from the first derivation} \\ \implies (q-r)(m-1)=m(p-q)(m-1) \\ \implies (q-r)=m(p-q)..........\text{as m is not equal to 1}

So, our final results are ( r s ) = m 2 ( p q ) (r-s)=m^2 (p-q) and ( q r ) = m ( p q ) (q-r)=m(p-q)

From above two results it is concluded that p q , q r , r s p-q,q-r,r-s are in G.P.

Prakhar Bindal
Dec 16, 2016

This is not a correct solution but for objective point of view this is the best approach

Consider the AP To be natural numbers

you obtain p = 1 q=2 r = 4 s = 8

obviously -1,-2,-4 are IN GP AGAIN

Q.E.D

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...