A.P or G.P?

Algebra Level 3

If

1 0 9 + 2 ( 11 ) ( 1 0 8 ) + 3 ( 1 1 2 ) ( 1 0 7 ) + + 10 ( 1 1 9 ) = 1 0 9 k 10^9+ 2(11)(10^8) + 3(11^2)(10^7) +\cdots+ 10(11^9) = 10^9k

then what is k k equal to?


The answer is 100.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Nov 23, 2016

S = 1 0 9 + 2 ( 11 ) ( 1 0 8 ) + 3 ( 1 1 2 ) ( 1 0 7 ) + . . . + 10 ( 1 1 9 ) = 1 0 9 ( 1 + 2 ( 1.1 ) + 3 ( 1. 1 2 ) + . . . + 10 ( 1. 1 9 ) ) 1.1 S = 1 0 9 ( 1.1 + 2 ( 1. 1 2 ) + 3 ( 1. 1 3 ) + . . . + 10 ( 1. 1 10 ) ) ( 1 1.1 ) S = 1 0 9 ( 1 + 1.1 + 1. 1 2 + . . . + 1. 1 9 10 ( 1. 1 10 ) ) 0.1 S = 1 0 9 ( 1. 1 10 1 1.1 1 10 ( 1. 1 10 ) ) = 1 0 9 ( 10 ( 1. 1 10 ) 10 10 ( 1. 1 10 ) ) = 1 0 10 S = 1 0 11 = 100 1 0 9 \begin{aligned} S & = 10^9 + 2(11)(10^8) + 3(11^2)(10^7) + ... + 10(11^9) \\ & = 10^9 \left( 1 + 2(1.1) + 3(1.1^2) + ... + 10(1.1^9) \right) \\ 1.1S & = 10^9 \left(1.1 + 2(1.1^2) + 3(1.1^3) + ... + 10(1.1^{10}) \right) \\ (1-1.1)S & = 10^9 \left( 1 + 1.1 + 1.1^2 + ... + 1.1^9 - 10(1.1^{10}) \right) \\ -0.1S & = 10^9 \left(\frac {1.1^{10}-1}{1.1-1} - 10(1.1^{10}) \right) \\ & = 10^9 \left(10(1.1^{10}) -10 - 10(1.1^{10}) \right) \\ & = - 10^{10} \\ \implies S & = 10^{11} \\ & = 100 \cdot 10^9 \end{aligned}

k = 100 \implies k = \boxed{100}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...