Apery and Fresnel join forces

Calculus Level 5

Let S ( u ) = 0 u sin ( π 2 x 2 ) d x \displaystyle S(u) = \int_0^u \sin\left(\frac{\pi}{2} x^2\right) \, dx be the Fresnel sine integral . If

n = 1 S 2 ( 2 n ) n 3 \sum_{n=1}^{\infty} \frac{S^2(\sqrt{2n})}{n^3}

can be expressed in the form a b π c \dfrac{a}{b}\pi^c , where a a and b b are coprime positive integers and c c is an integer, find a + b + c a+b+c .

Hint : Consider an appropriate function f ( x ) = x σ f(x) = |x|^{\sigma} where σ R \sigma \in \mathbb{R} and apply Parseval's theorem.


The answer is 21.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Jake Lai
Nov 14, 2015

Parseval's theorem states that, for a Fourier series f ( x ) = 1 2 a 0 + n = 1 a n cos ( n x ) + b n sin ( n x ) \displaystyle f(x) = \frac{1}{2}a_0 + \sum_{n=1}^{\infty} a_n\cos(nx) + b_n\sin(nx) with

a 0 = 1 π π π f ( x ) d x a n = 1 π π π f ( x ) cos ( n x ) d x b n = 1 π π π f ( x ) sin ( n x ) d x \begin{aligned} a_0 &= \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \ dx \\ a_n &= \frac{1}{\pi} \int_{-\pi}^{\pi} f(x)\cos(nx) \ dx \\ b_n &= \frac{1}{\pi} \int_{-\pi}^{\pi} f(x)\sin(nx) \ dx \end{aligned}

we have

1 π π π f ( x ) 2 d x = 1 2 a 0 2 + n = 1 a n 2 + b n 2 \frac{1}{\pi} \int_{-\pi}^{\pi} f(x)^2 \ dx = \frac{1}{2}a_0^2 + \sum_{n=1}^{\infty} a_n^2 + b_n^2

Since we are considering f ( x ) = x σ f(x) = |x|^{\sigma} , we get that

b n = 1 π π π x σ sin ( n x ) = 0 b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} |x|^{\sigma}\sin(nx) = 0

because x σ sin ( n x ) |x|^{\sigma}\sin(nx) is an odd function. Thus, we only need to deal with the 1 2 a 0 \frac{1}{2}a_0 and a n cos ( n x ) a_n\cos(nx) components. We can guess that a n = k S ( 2 n ) n 3 / 2 a_n = k\dfrac{S(\sqrt{2n})}{n^{3/2}} , where k k is some constant, so we will find the value of σ \sigma from that.

a n = 1 π π π x σ cos ( n x ) d x = 2 π 0 π x σ cos ( n x ) d x ( x σ cos ( n x ) is even ) = 2 π 0 π σ x σ 1 1 n sin ( n x ) d x ( Integration by parts ) = 2 σ n 2 0 2 n t ( π 2 t 2 ) σ 1 sin ( π 2 t 2 ) d t ( Let n x = π 2 t 2 ) = 2 σ n 2 ( π 2 n ) σ 1 0 2 n t 2 σ 1 sin ( π 2 t 2 ) d t \begin{aligned} a_n &= \frac{1}{\pi} \int_{-\pi}^{\pi} |x|^{\sigma}\cos(nx) \ dx \\ &= \frac{2}{\pi} \int_0^{\pi} x^{\sigma}\cos(nx) \ dx & (|x|^{\sigma}\cos(nx) \text{ is even}) \\ &= -\frac{2}{\pi} \int_0^{\pi} \sigma x^{\sigma-1} \cdot \frac{1}{n} \sin(nx) \ dx & (\text{Integration by parts}) \\ &= -\frac{2\sigma}{n^2} \int_0^{\sqrt{2n}} t \left( \frac{\pi}{2}t^2 \right)^{\sigma-1}\sin \left( \frac{\pi}{2}t^2 \right) \ dt & (\text{Let } nx = \frac{\pi}{2}t^2) \\ &= -\frac{2\sigma}{n^2} \left( \frac{\pi}{2n} \right)^{\sigma-1} \int_0^{\sqrt{2n}} t^{2\sigma-1} \sin \left( \frac{\pi}{2}t^2 \right) \ dt \end{aligned}

We are very close to getting the Fresnel sine integral. If we let σ = 1 2 \sigma = \frac{1}{2} to eliminate the t 2 σ 1 t^{2\sigma-1} in the integral, we get

a n = 2 σ n 2 ( π 2 n ) σ 1 0 2 n t 2 σ 1 sin ( π 2 t 2 ) d t = 2 π S ( 2 n ) n 3 / 2 a_n = -\frac{2\sigma}{n^2} \left( \frac{\pi}{2n} \right)^{\sigma-1} \int_0^{\sqrt{2n}} t^{2\sigma-1} \sin \left( \frac{\pi}{2}t^2 \right) \ dt = -\sqrt{\frac{2}{\pi}}\frac{S(\sqrt{2n})}{n^{3/2}}

Hence, σ = 1 2 \sigma = \frac{1}{2} and k = 2 π k = -\sqrt{\frac{2}{\pi}} . Now, we need to find the value of a 0 a_0 , which proves to be simple:

a 0 = 1 π π π x 1 / 2 d x = 2 π 0 π x 1 / 2 d x ( x 1 / 2 is even ) = 2 π π 3 / 2 3 / 2 = 4 3 π 1 / 2 \begin{aligned} a_0 &= \frac{1}{\pi} \int_{-\pi}^{\pi} |x|^{1/2} \ dx \\ &= \frac{2}{\pi} \int_0^{\pi} x^{1/2} \ dx & (|x|^{1/2} \text{ is even}) \\ &= \frac{2}{\pi} \frac{\pi^{3/2}}{3/2} \\ &= \frac{4}{3}\pi^{1/2} \end{aligned}

So, using Parseval's theorem, we have that

1 2 a 0 2 + n = 1 a n 2 = 1 π π π f ( x ) 2 d x 1 2 ( 4 3 π 1 / 2 ) 2 + n = 1 ( 2 π S ( 2 n ) n 3 / 2 ) 2 = 1 π π π ( x 1 / 2 ) 2 d x 8 9 π + n = 1 2 π S 2 ( 2 n ) n 3 = 2 π 0 π x d x 8 9 π + 2 π n = 1 S 2 ( 2 n ) n 3 = π \begin{array}{ll} \displaystyle \frac{1}{2}a_0^2 + \sum_{n=1}^{\infty} a_n^2 &= \displaystyle \frac{1}{\pi} \int_{-\pi}^{\pi} f(x)^2 \ dx \\ \displaystyle \frac{1}{2}\left( \frac{4}{3}\pi^{1/2} \right)^2 + \sum_{n=1}^{\infty} \left( -\sqrt{\frac{2}{\pi}} \frac{S(\sqrt{2n})}{n^{3/2}} \right)^2 &= \displaystyle \frac{1}{\pi} \int_{-\pi}^{\pi} (|x|^{1/2})^2 \ dx \\ \displaystyle \frac{8}{9}\pi + \sum_{n=1}^{\infty} \frac{2}{\pi}\frac{S^2(\sqrt{2n})}{n^3} &= \displaystyle \frac{2}{\pi} \int_0^{\pi} x \ dx \\ \displaystyle \frac{8}{9}\pi + \frac{2}{\pi} \sum_{n=1}^{\infty} \frac{S^2(\sqrt{2n})}{n^3} &= \displaystyle \pi \end{array}

Therefore, we finally have

n = 1 S 2 ( 2 n ) n 3 = π 2 18 \sum_{n=1}^{\infty} \frac{S^2(\sqrt{2n})}{n^3} = \boxed{\dfrac{\pi^2}{18}}

Extremely well written. Thank you!

Pi Han Goh - 5 years, 6 months ago

Log in to reply

I thought it was pretty messy, haha. Thanks for the compliment!

Jake Lai - 5 years, 6 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...