Appearances Can Be Deceiving

Geometry Level 2

In the regular 8-sided octagon below, __________ \text{\_\_\_\_\_\_\_\_\_\_} .

Black area is larger Blue area is larger Black and Blue areas are equal

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Sabhrant Sachan
Jul 16, 2016

Relevant wiki: Regular Polygons - Problem Solving - Medium

Consider this diagram ... Let the side of the octagon be a a

A r . o f A C J = A r . o f B K H = A r . o f F M G = A r . o f D L E Also A r . o f ( C J L D ) = A r . o f ( K M G H ) Ar. of \triangle{ACJ} = Ar. of \triangle{BKH} =Ar. of \triangle{FMG} =Ar. of \triangle{DLE} \\ \text{Also } Ar. of (CJLD) = Ar. of (KMGH)

Internal Angles of a Regular Octagon are equal to 135 since Angle D C J = 90 A C J = 45 and C A J = 45 Which means C J = A J C J 2 + A J 2 = A C 2 2 A J 2 = a 2 A J = a 2 Similarly A J = C J = B K = K H = M G = M F = L E = D L = a 2 A r . o f A C J = 1 2 a 2 a 2 = a 2 4 A r . o f ( C J L D ) = a 2 a = a 2 2 Total Blue Area : 4 × a 2 4 + 2 × a 2 2 = a 2 ( 1 + 2 ) Total Black Area : A B A E a × ( A J + J L + L E ) = a ( a 2 + a 2 + a ) = a 2 ( 1 + 2 ) Area of Blue = Area of black \text{Internal Angles of a Regular Octagon are equal to 135 } \\ \text{ since Angle } \angle DCJ = 90 \implies \angle ACJ = 45 \text{ and } \angle CAJ = 45 \\ \text{Which means } CJ=AJ \\ CJ^2+AJ^2=AC^2 \implies 2\cdot AJ^2=a^2 \\ AJ=\dfrac{a}{\sqrt{2}} \\ \text{Similarly } AJ=CJ=BK=KH=MG=MF=LE=DL=\dfrac{a}{\sqrt2} \\ Ar. of \triangle{ACJ} = \dfrac{1}{2} \cdot \dfrac{a}{\sqrt{2}} \cdot \dfrac{a}{\sqrt{2}} = \dfrac{a^2}{4} \\ Ar. of (CJLD) = \dfrac{a}{\sqrt{2}} \cdot a = \dfrac{a^2}{\sqrt2} \\ \text{Total Blue Area : } 4\times \dfrac{a^2}{4}+2\times \dfrac{a^2}{\sqrt2} = \boxed{a^2(1+\sqrt2)} \\ \text{Total Black Area : } AB\cdot AE \implies a\times \left( AJ+JL+LE\right) \\ = a\cdot \left( \dfrac{a}{\sqrt2}+\dfrac{a}{\sqrt2}+a\right) = \boxed{a^2\left( 1+\sqrt2 \right)} \\ \text{Area of Blue = Area of black }

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...