Application of EM easy

Find the angular frequency of the simple harmonic motion of a point charge (of charge q and mass m) at the centre of an insulating uniformly charged ring (linear charge density λ \lambda ), when displaced in the plane of the ring by a short distance.

ω = q λ 4 m ϵ 0 r 2 \omega={\sqrt{\frac{q\lambda}{4m\epsilon_0 r^2}}} ω = q λ 4 m ϵ 0 r 2 \omega=\frac{q\lambda}{4m\epsilon_0 r^2} ω = q λ 3 m r 2 \omega=\frac{q\lambda}{3mr^2}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Pawan Goyal
Apr 23, 2019

Acc to Maxwell's equation, Gauss's law = E d s = Q \oint E\cdot ds=Q is a complicated quantity. It won't be constant over any simple surface. m ω 2 = d 2 v d x 2 ( 0 , 0 ) m\omega^2=\frac {d^2 v}{dx^2}|_{(0,0)} d 2 v x , y d x 2 0 , 0 = d 2 v x , 0 d x 2 x = 0 \frac{d^2 v_{x,y}}{dx^2}|_{0,0}=\frac{d^2 v_{x,0}}{dx^2}|_{x=0} V x , 0 = d q r 1 4 π ϵ 0 = 1 4 π ϵ 0 0 2 π q λ r d θ ( r 2 + x 2 + 2 r x C o s θ ) V_{x,0}=\int\frac{dq'}{r'}\cdot\frac {1}{4\pi\epsilon_0}=\frac{1}{4\pi\epsilon_0}\int_0^{2\pi}\frac{q\lambda rd\theta'}{(r^2+x^2+2rxCos\theta')} = q λ 4 π ϵ 0 0 2 π ( 1 + 2 x r C o s θ + ( x r ) 2 ) 1 2 d θ =\frac {q\lambda}{4\pi\epsilon_0}\int_0^{2\pi}(1+2\frac {x}{r}Cos\theta'+(\frac{x}{r})^2)^{-\frac {1}{2}}d\theta' x r \frac{x}{r}\approx small V ( x , 0 ) = q λ 4 π ϵ 0 0 2 π d θ [ 1 C o s θ ( x r ) + 3 C o s 2 θ 1 2 ( x 2 r 2 ) + θ ( x 2 r 2 ) ] V_{(x,0)}=\frac {q\lambda}{4\pi\epsilon_0}\int_0^{2\pi}d\theta [1-Cos\theta(\frac {x}{r})+\frac{3Cos^2\theta-1}{2}(\frac {x^2}{r^2})+\theta (\frac{x^2}{r^2})] d 2 v x , 0 d x 2 x = 0 = q λ 4 π ϵ 0 0 2 π d θ 3 C o s 2 θ 1 2 2 r 2 \frac{d^2 v_{x,0}}{dx^2}|_{x=0}=\frac {q\lambda}{4\pi\epsilon_0}\int_0^{2\pi}d\theta\frac {3Cos^2\theta-1}{2}\cdot\frac {2}{r^2} = q λ 4 ϵ 0 r 2 =\frac{q\lambda}{4\epsilon_0 r^2} ω = d 2 v d x 2 0 , 0 m \omega={\sqrt{\frac{\frac{d^2 v}{dx^2}|_{0,0}}{m}}} ω = q λ 4 m ϵ 0 r 2 \omega={\sqrt {\frac {q\lambda}{4m\epsilon_0 r^2}}}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...