Application of Equations #1

Algebra Level 3

Three complex numbers α , β , γ \alpha,\beta,\gamma satisfy below three equations.

  • α + β + γ = 1 \alpha+\beta+\gamma=1

  • α 2 + β 2 + γ 2 = 3 \alpha^2+\beta^2+\gamma^2=3

  • α β γ = 1 \alpha\beta\gamma=1

Find the value of α 10 α 9 α 8 + β 10 β 9 β 8 + γ 10 γ 9 γ 8 \alpha^{10}-\alpha^9-\alpha^8+\beta^{10}-\beta^9-\beta^8+\gamma^{10}-\gamma^9-\gamma^8 .


The answer is 71.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Boi (보이)
Jun 6, 2017

( α + β + γ ) 2 = α 2 + β 2 + γ 2 + 2 ( α β + β γ + γ α ) ; (\alpha+\beta+\gamma)^2=\alpha^2+\beta^2+\gamma^2+2(\alpha\beta+\beta\gamma+\gamma\alpha); .

α β + β γ + γ α = 1 \alpha\beta+\beta\gamma+\gamma\alpha=-1 .

.

One of the cubic equations that have α , β , γ \alpha, \beta, \gamma as their roots is ( x α ) ( x β ) ( x γ ) = 0 ; (x-\alpha)(x-\beta)(x-\gamma)=0; .

x 3 ( α + β + γ ) x 2 + ( α β + β γ + γ α ) x α β γ = 0 ; x^3-(\alpha+\beta+\gamma)x^2+(\alpha\beta+\beta\gamma+\gamma\alpha)x-\alpha\beta\gamma=0;

x 3 x 2 x 1 = 0 ; x^3-x^2-x-1=0;

x 3 = x 2 + x + 1 x^3=x^2+x+1 .

And since this equation has α , β , γ \alpha, \beta, \gamma as its roots,

α 3 = α 2 + α + 1 , β 3 = β 2 + β + 1 γ 3 = γ 2 + γ + 1 \alpha^3=\alpha^2+\alpha+1, \quad \beta^3=\beta^2+\beta+1\, \quad \gamma^3=\gamma^2+\gamma+1 .

.

Multiply α n , β n , γ n \alpha^{n},\beta^{n},\gamma^{n} to each equation and define f ( n ) = α n + β n + γ n f(n)=\alpha^n+\beta^n+\gamma^n where n n is an integer that is not negative.

f ( n + 3 ) = f ( n + 2 ) + f ( n + 1 ) + f ( n ) f(n+3)=f(n+2)+f(n+1)+f(n) . Also, f ( n + 3 ) f ( n + 2 ) f ( n + 1 ) = f ( n ) f(n+3)-f(n+2)-f(n+1)=f(n) .

.

Since f ( 0 ) = 3 , f ( 1 ) = 1 , f ( 2 ) = 3 f(0)=3, \quad f(1)=1,\quad f(2)=3 ,

f ( 3 ) = f ( 2 ) + f ( 1 ) + f ( 0 ) = 3 + 1 + 3 = 7 f ( 4 ) = f ( 3 ) + f ( 2 ) + f ( 1 ) = 7 + 3 + 1 = 11 f ( 5 ) = f ( 4 ) + f ( 3 ) + f ( 2 ) = 11 + 7 + 3 = 21 f ( 6 ) = f ( 5 ) + f ( 4 ) + f ( 3 ) = 21 + 11 + 7 = 39 f(3)=f(2)+f(1)+f(0)=3+1+3=7 \\ f(4)=f(3)+f(2)+f(1)=7+3+1=11 \\ f(5)=f(4)+f(3)+f(2)=11+7+3=21 \\ f(6)=f(5)+f(4)+f(3)=21+11+7= 39

.

α 10 α 9 α 8 + β 10 β 9 β 8 + γ 10 γ 9 γ 8 = f ( 10 ) f ( 9 ) f ( 8 ) = f ( 7 ) = f ( 6 ) + f ( 5 ) + f ( 4 ) = 39 + 21 + 11 = 71 \therefore \alpha^{10}-\alpha^9-\alpha^8+\beta^{10}-\beta^9-\beta^8+\gamma^{10}-\gamma^9-\gamma^8 \\ =f(10)-f(9)-f(8) \\ =f(7) \\ =f(6)+f(5)+f(4) \\ =39+21+11 \\ = \boxed{71}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...