Applications Of Derivatives

Calculus Level 2

For x>1, ((e^x)/x)>=e

I dont know False Cant say True

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Tom Engelsman
Sep 14, 2017

I'm going to use Induction here.

CASE I (x = 2): e 2 2 e ( e 2 ) e e e 2 1 \frac{e^{2}}{2} \ge e \Rightarrow (\frac{e}{2})e \ge e \Rightarrow \frac{e}{2} \ge 1 , which is true.

CASE II (assume x = k is true): e k k e ; \frac{e^{k}}{k} \ge e;

CASE III (verify x = k+1 is true):

e k k e e e e k + 1 k e 2 ; \frac{e^{k}}{k} \cdot e \ge e \cdot e \Rightarrow \frac{e^{k+1}}{k} \ge e^2;

or e k + 1 k k + 1 k + 1 e 2 ; \frac{e^{k+1}}{k} \cdot \frac{k+1}{k+1} \ge e^2;

or e k + 1 k + 1 ( k k + 1 ) e 2 ; \frac{e^{k+1}}{k+1} \ge (\frac{k}{k+1}) \cdot e^2;

or e k + 1 k + 1 [ ( 1 1 k + 1 ) e ] e \frac{e^{k+1}}{k+1} \ge [(1 - \frac{1}{k+1})e] \cdot e

As k k \rightarrow \infty , the quantity ( 1 1 k + 1 ) e (1 - \frac{1}{k+1}) \cdot e approaches e e e k + 1 k + 1 [ ( 1 1 k + 1 ) e ] e e \Rightarrow \frac{e^{k+1}}{k+1} \ge [(1 - \frac{1}{k+1})e] \cdot e \ge e holds true for x = k + 1 x = k+1 .

Q . E . D . \mathbb{Q}. \mathbb{E}. \mathbb{D}.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...