A number theory problem by Shikhar Gupta

Find the remainder when 6 7 67 + 67 67^{67} + 67 is divided by 68.


The answer is 66.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

67 = -1(mod68)

67² = 1(mod68)

67^66 = 1(mod68)

67^67 = 67(mod68)

67^67 +67 = 67+67(mod67)

So, 67^67 + 67 = 66(mod67)

Relevant wiki: Euler's Theorem

6 7 67 + 67 6 7 67 mod ϕ ( 68 ) + 67 (mod 68) As gcd ( 67 , 68 ) = 1 , Euler’s theorem applies. 6 7 67 mod 32 + 67 (mod 68) Euler’s totient function ϕ ( 68 ) = 32 6 7 3 + 67 (mod 68) ( 68 1 ) 3 + 67 (mod 68) ( 1 ) 3 + 67 (mod 68) 1 + 67 (mod 68) 66 (mod 68) \begin{aligned} 67^{67} + 67 & \equiv 67^{\color{#3D99F6}67 \text{ mod }\phi(68)} + 67 \text{ (mod 68)} & \small \color{#3D99F6} \text{As }\gcd(67,68) = 1 \text {, Euler's theorem applies.} \\ & \equiv 67^{\color{#3D99F6}67 \text{ mod }32} + 67 \text{ (mod 68)} & \small \color{#3D99F6} \text {Euler's totient function }\phi(68) = 32 \\ & \equiv 67^{\color{#3D99F6}3} + 67 \text{ (mod 68)} \\ & \equiv (68-1)^3 + 67 \text{ (mod 68)} \\ & \equiv (-1)^3 + 67 \text{ (mod 68)} \\ & \equiv -1 + 67 \text{ (mod 68)} \\ & \equiv \boxed{66} \text{ (mod 68)} \end{aligned}

Tapas Mazumdar
Feb 28, 2017

Relevant wiki: Binomial Theorem

We have

6 7 67 + 67 = ( 68 1 ) 67 + 67 = [ ( 67 0 ) 6 8 67 ( 67 1 ) 6 8 66 + + ( 67 k ) 6 8 67 k ( 1 ) k + + ( 67 66 ) 68 ( 67 67 ) ] + 67 = 68 λ 1 + 67 where λ = ( 67 0 ) 6 8 66 ( 67 1 ) 6 8 65 + + ( 67 66 ) = 68 λ + 66 \begin{aligned} 67^{67} + 67 &= {(68-1)}^{67} + 67 \\ &= \left[ \dbinom{67}{0} 68^{67} - \dbinom{67}{1} 68^{66} + \cdots + \dbinom{67}{k} 68^{67-k} \cdot {(-1)}^k + \cdots + \dbinom{67}{66} 68 - \dbinom{67}{67} \right] + 67 \\ &= 68 \lambda - 1 + 67 \qquad \qquad \qquad \qquad \small\color{#D61F06}{\text{where } \lambda = \dbinom{67}{0} 68^{66} - \dbinom{67}{1} 68^{65} + \cdots + \dbinom{67}{66} } \\ &= 68 \lambda + 66 \end{aligned}

Thus

68 λ + 66 66 ( m o d 68 ) 68 \lambda + 66 \equiv \boxed{66} \pmod{68}

Ravneet Singh
Mar 3, 2017

Algebra Solution:

Given expression can be written as 6 7 67 + 1 + 66 67^{67} + 1 + 66 6 7 67 + 1 67 + 66 \Longrightarrow67^{67} + 1^{67} + 66

As x n \large x^n + y n \large y^n is divisible by x \large x + y \large y for odd values of n \large n

Therefore 6 7 67 + 1 67 67^{67} + 1^{67} is divisible by 68, leaving 66 as remainder.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...