Apply Cauchy-Schwarz?

Algebra Level 5

a b ( b + c ) 2 + b c ( c + a ) 2 + c a ( a + b ) 2 \large \dfrac {a}{b(b+c)^2} + \dfrac {b}{c(c+a)^2} + \dfrac {c}{a(a+b)^2}

Let a a , b b and c c be positive reals such that a b + b c + c a = k ab+bc+ca=k , where k k is a positive real as well.

Let the minimum value of the above expression be x y k z \dfrac {x}{y} k^{z} , where x x and y y are coprime positive integers and z z is an integer. Find x + y + z x+y+z .


The answer is 12.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Sharky Kesa
Aug 20, 2016

Relevant wiki: Classical Inequalities - Problem Solving - Intermediate

We will first prove Titu's lemma:

Titu's Lemma : a 2 x + b 2 y ( a + b ) 2 x + y \frac {a^2}{x} + \frac {b^2}{y} \geq \frac {(a+b)^2}{x+y}

Multiplying denominators leads to

a 2 y ( x + y ) + b 2 x ( x + y ) ( a + b ) 2 x y a 2 x y + a 2 y 2 + b 2 x 2 + b 2 x y a 2 x y + b 2 x y + 2 a b x y a 2 y 2 + b 2 x 2 2 a b x y 0 ( a y b x ) 2 0 \begin{aligned} a^2 y (x+y) + b^2 x (x+y) &\geq (a+b)^2 xy\\ a^2 xy + a^2 y^2 + b^2 x^2 + b^2 xy &\geq a^2 xy + b^2 xy + 2abxy\\ a^2 y^2 + b^2 x^2 - 2abxy &\geq 0\\ (ay-bx)^2 &\geq 0 \end{aligned}

The final statement is trivially true, so our lemma must also be true. Thus, proven. Note that we can generalise this to a i 2 b i ( a i ) 2 b i \displaystyle \sum \dfrac {a_i^2}{b_i} \geq \dfrac{(\displaystyle \sum a_i)^2}{\displaystyle \sum b_i} . The proof for this is not too hard and is left as exercise to the reader.


Note that a b ( b + c ) 2 = a 2 ( b + c ) 2 a b \dfrac {a}{b(b+c)^2} = \dfrac {\frac {a^2}{(b+c)^2}}{ab} . Substituting this into the original expression for each of the other two parts as well, then applying the lemma, we yield

a b ( b + c ) 2 + b c ( c + a ) 2 + c a ( a + b ) 2 ( a b + c + b c + a + c a + b ) 2 a b + b c + c a = ( a b + c + b c + a + c a + b ) 2 k \dfrac {a}{b(b+c)^2} + \dfrac {b}{c(c+a)^2} + \dfrac {c}{a(a+b)^2} \geq \dfrac{\left ( \frac {a}{b+c} + \frac {b}{c+a} + \frac {c}{a+b} \right )^2}{ab+bc+ca} = \dfrac{\left ( \frac {a}{b+c} + \frac {b}{c+a} + \frac {c}{a+b} \right )^2}{k}

We will now prove a b + c + b c + a + c a + b 3 2 \frac {a}{b+c} + \frac {b}{c+a} + \frac {c}{a+b} \geq \frac {3}{2} . Note the following:

a b + c + b c + a + c a + b = a 2 a b + a c + b 2 b c + a b + c 2 a c + b c ( a + b + c ) 2 2 ( a b + b c + c a ) \begin{aligned} \dfrac {a}{b+c} + \dfrac {b}{c+a} + \dfrac {c}{a+b} &= \dfrac {a^2}{ab+ac} + \dfrac {b^2}{bc+ab} + \dfrac {c^2}{ac+bc}\\ &\geq \dfrac {(a+b+c)^2}{2(ab+bc+ca)} \end{aligned}

It suffices to prove ( a + b + c ) 2 2 ( a b + b c + c a ) 3 2 \frac {(a+b+c)^2}{2(ab+bc+ca)} \geq \frac {3}{2} , which simplifies to a 2 + b 2 + c 2 a b + b c + c a a^2+b^2+c^2 \geq ab+bc+ca , which can be rearranged to ( a b ) 2 + ( b c ) 2 + ( c a ) 2 0 (a-b)^2 + (b-c)^2 + (c-a)^2 \geq 0 , which is trivially true. Thus, a b + c + b c + a + c a + b 3 2 \frac {a}{b+c} + \frac {b}{c+a} + \frac {c}{a+b} \geq \frac {3}{2} , so ( a b + c + b c + a + c a + b ) 2 = 9 4 \left ( \frac {a}{b+c} + \frac {b}{c+a} + \frac {c}{a+b} \right )^2 = \frac {9}{4} . Thus,

a b ( b + c ) 2 + b c ( c + a ) 2 + c a ( a + b ) 2 9 4 k = 9 4 k 1 \dfrac {a}{b(b+c)^2} + \dfrac {b}{c(c+a)^2} + \dfrac {c}{a(a+b)^2} \geq \dfrac {9}{4k} = \dfrac {9}{4} k^{-1}

so x = 9 x=9 , y = 4 y=4 and z = 1 z=-1 . Thus, x + y + z = 12 x+y+z=12 .

By the Cauchy-Schwarz inequality, ( ( a b ( b + c ) 2 ) 2 + ( b c ( c + a ) 2 ) 2 + ( c a ( a + b ) 2 ) 2 ) ( ( a b ) 2 + ( b c ) 2 + ( c a ) 2 ) ( a b + c + b c + a + c a + b ) 2 \left(\left(\sqrt{\frac{a}{b(b+c)^2}}\right)^2+\left(\sqrt{\frac{b}{c(c+a)^2}}\right)^2+\left(\sqrt{\frac{c}{a(a+b)^2}}\right)^2\right)\left((\sqrt{ab})^2+(\sqrt{bc})^2+(\sqrt{ca})^2\right)\geq \left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)^2 Without loss of generality,let a b c a\geq b\geq c .Then 1 b + c 1 a + c 1 a + b \dfrac{1}{b+c}\geq \dfrac{1}{a+c}\geq \dfrac{1}{a+b} .

Applying the Rearrangement Inequality to the sequences ( a , b , c ) (a,b,c) and ( 1 b + c , 1 a + c , 1 a + b ) (\dfrac{1}{b+c},\dfrac{1}{a+c},\dfrac{1}{a+b}) ,we get: a b + c + b c + a + c a + b b b + c + c c + a + a a + b ( 1 ) a b + c + b c + a + c a + b c b + c + a c + a + b a + b ( 2 ) ( 1 ) + ( 2 ) 2 ( a b + c + b c + a c a + b ) b + c b + c + c + a c + a + a + b a + b = 3 a b + c + b c + a + c a + b 3 2 \begin{aligned} \dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b} &\geq \dfrac{b}{b+c}+\dfrac{c}{c+a}+\dfrac{a}{a+b}\rightarrow (1)\\ \dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}&\geq \dfrac{c}{b+c}+\dfrac{a}{c+a}+\dfrac{b}{a+b}\rightarrow (2) \end{aligned}\\ (1)+(2)\implies 2\left(\dfrac{a}{b+c}+\dfrac{b}{c+a}\dfrac{c}{a+b}\right)\geq \dfrac{b+c}{b+c}+\dfrac{c+a}{c+a}+\dfrac{a+b}{a+b}=3\\ \implies \boxed{\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\geq \dfrac{3}{2}} Hence a b ( b + c ) 2 + b c ( c + a ) 2 + c a ( a + b ) 2 ( 3 2 ) 2 × k 1 = 9 4 k 1 \dfrac{a}{b(b+c)^2}+\dfrac{b}{c(c+a)^2}+\dfrac{c}{a(a+b)^2}\geq \left(\dfrac{3}{2}\right)^2\times k^{-1}=\dfrac{9}{4}k^{-1} .Therefore x = 9 , y = 4 , z = 1 x + y + z = 12 x=9,y=4,z=-1\implies x+y+z=\boxed{12}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...