Exponent variable

Algebra Level 3

( 5 + 24 ) x 2 3 + ( 5 24 ) x 2 3 = 10 , x = ? \large (5 + \sqrt {24})^{x^2-3} + (5-\sqrt{24})^{x^2-3} =10, \ \ \ \ \ x = \ ?

{ 2 , 2 , 2 , 2 } \{2,-2, \sqrt 2, - \sqrt 2 \} { 2 , 2 } \{2,\sqrt 2 \} None of these choices { 2 , 2 } \{ \sqrt 2, - \sqrt 2 \} Lack of relevant information { 2 , 2 } \{ 2, -2 \}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Apr 26, 2015

( 5 + 24 ) x 2 3 + ( 5 24 ) x 2 3 = 10 ( 25 + 24 ) x 2 3 + ( 25 24 ) x 2 3 = 10 ( 25 + 24 ) 2 ( x 2 3 ) + ( 25 + 24 ) x 2 3 ( 25 24 ) x 2 3 = 10 ( 25 + 24 ) x 2 3 ( 25 + 24 ) 2 ( x 2 3 ) + ( 25 24 ) x 2 3 = 10 ( 25 + 24 ) x 2 3 ( 5 + 24 ) 2 ( x 2 3 ) 10 ( 5 + 24 ) x 2 3 + 1 = 0 ( 5 + 24 ) x 2 3 = 10 ± 100 4 2 = 5 ± 24 x 2 3 = ± 1 { x 2 = 4 x = ± 2 x 2 = 2 x = ± 2 (5+\sqrt{24})^{x^2-3} + (5-\sqrt{24})^{x^2-3} = 10 \\ (\sqrt{25}+\sqrt{24})^{x^2-3} + (\sqrt{25}-\sqrt{24})^{x^2-3} = 10 \\ (\sqrt{25}+\sqrt{24})^{2(x^2-3)} + (\sqrt{25}+\sqrt{24})^{x^2-3}(\sqrt{25}-\sqrt{24})^{x^2-3} = 10 (\sqrt{25}+\sqrt{24})^{x^2-3} \\ (\sqrt{25}+\sqrt{24})^ {2(x^2-3)} + (25-24)^{x^2-3} = 10 (\sqrt{25}+\sqrt{24})^{x^2-3} \\ (5+\sqrt{24})^ {2(x^2-3)} - 10 (5+\sqrt{24})^{x^2-3} + 1 = 0 \\ \Rightarrow (5+\sqrt{24})^{x^2-3} = \dfrac {10 \pm \sqrt{100-4}} {2} = 5 \pm \sqrt{24} \\ \Rightarrow x^2 - 3 = \pm 1 \quad \Rightarrow \begin{cases} x^2 = 4 & \Rightarrow x = \boxed{\pm 2} \\ x^2 = 2 & \Rightarrow x = \boxed{\pm \sqrt{2}} \end{cases}

Moderator note:

There's still a simpler approach.

@Chew-Seong Cheong , can you please elaborate on your solution, Thank you.

Brilliant Mathematics Staff - 6 years, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...