Approach matters here, show yours

Calculus Level 4

If the curve y = A . e x + B . e 2 x + C . e 3 x y=A.e^x+B.e^{2x}+C.e^{3x} satisfies the differential equation a . d 3 y d x 3 + b . d 2 y d x 2 + c . d y d x + d . y = 0 a.\frac{d^3y}{dx^3}+b.\frac{d^2y}{dx^2}+c.\frac{dy}{dx}+d.y=0

Find the value of b × c a × d \dfrac{b \times c}{a \times d}

Check out more questions on differential equations


The answer is 11.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

6 solutions

Sandeep Bhardwaj
Nov 30, 2014

Given Primitive : y = a e x + b e 2 x + c e 3 x y=ae^{x}+be^{2x}+ce^{3x}

y . e x = a + b e x + c e 2 x \implies y.e^{-x}=a+be^x+ce^{2x}

Differentiating wrt x

e x ( d y d x y ) = b e x + 2 c e 2 x e^{-x}\left(\frac{dy}{dx}-y\right)=be^{x}+2ce^{2x}

e 2 x ( d y d x y ) = b + 2 c e x \implies e^{-2x}\left(\frac{dy}{dx}-y\right)=b+2ce^{x}

Differentiating wrt x again

e 2 x ( d 2 y d x 2 3. d y d x + 2 y ) = 2 c e x e^{-2x}\left(\frac{d^{2}y}{dx^{2}}-3.\frac{dy}{dx}+2y\right)=2ce^{x}

e 3 x ( d 2 y d x 2 3. d y d x + 2 y ) = 2 c \implies e^{-3x}\left(\frac{d^{2}y}{dx^{2}}-3.\frac{dy}{dx}+2y\right)=2c

Differentiating wrt x again, we have

e 3 x ( d 3 y d x 3 6. d 2 y d x 2 + 11. d y d x 6 y ) = 0 e^{-3x}\left(\frac{d^{3}y}{dx^{3}}-6.\frac{d^{2}y}{dx^{2}}+11.\frac{dy}{dx}-6y\right)=0

As e 3 x 0 e^{-3x} \neq 0

Therefore Required differential equation is

d 3 y d x 3 6. d 2 y d x 2 + 11. d y d x 6 y = 0 \frac{d^{3}y}{dx^{3}}-6.\frac{d^{2}y}{dx^{2}}+11.\frac{dy}{dx}-6y=0

On comparing coefficients we get b × c a × d = 11 \dfrac{b \times c}{a \times d}=\boxed{11} .

What a solution sir !!! Hats off to you. Great.

Maths Mathematics - 6 years, 6 months ago

i think you need to say something about the curve Y=0 . (for a=0,b=0,c=0,d=0)

Pablo Torres - 6 years, 3 months ago
Pranjal Jain
Nov 30, 2014

y = a e x + b e 2 x + c e 3 x y=ae^{x}+be^{2x}+ce^{3x}

d y d x = a e x + 2 b e 2 x + 3 c e 3 x \frac{dy}{dx}=ae^{x}+2be^{2x}+3ce^{3x}

d 2 y d x 2 = a e x + 4 b e 2 x + 9 c e 3 x \frac{d^{2}y}{dx^{2}}=ae^{x}+4be^{2x}+9ce^{3x}

d 3 y d x 3 = a e x + 8 b e 2 x + 27 c e 3 x \frac{d^{3}y}{dx^{3}}=ae^{x}+8be^{2x}+27ce^{3x}

Substituting in given equation,

a d y d x + b d 2 y d x 2 + c d y d x + d y = 0 a\frac{dy}{dx}+b\frac{d^{2}y}{dx^{2}}+c\frac{dy}{dx}+dy=0

a ( a + b + c + d ) e x + b ( 8 a + 4 b + 2 c + d ) e 2 x + c ( 27 a + 9 b + 3 c + d ) e 3 x = 0 \Rightarrow a(a+b+c+d)e^{x}+b(8a+4b+2c+d)e^{2x}+c(27a+9b+3c+d)e^{3x}=0

Since e x e^{x} , e 2 x e^{2x} and e 3 x e^{3x} cannot be 0 or negative, their coefficients must be 0.

a + b + c + d = 0 a+b+c+d=0 ..... ( 1 ) \color{#D61F06}{(1)}

8 a + 4 b + 2 c + d = 0 8a+4b+2c+d=0 ..... ( 2 ) \color{#D61F06}{(2)}

27 a + 9 b + 3 c + d = 0 27a+9b+3c+d=0 ..... ( 3 ) \color{#D61F06}{(3)}

( 2 ) ( 1 ) \color{#D61F06}{(2)-(1)} 7 a + 3 b + c = 0 7a+3b+c=0 ..... ( 4 ) \color{#D61F06}{(4)}

( 3 ) ( 2 ) \color{#D61F06}{(3)-(2)} 19 a + 5 b + c = 0 19a+5b+c=0 ..... ( 5 ) \color{#D61F06}{(5)}

( 5 ) ( 4 ) \color{#D61F06}{(5)-(4)} 12 a + 2 b = 0 12a+2b=0 ..... ( 6 ) \color{#D61F06}{(6)}

Let a = 1 a=1 . It gives b = 6 , c = 11 , d = 6 b=-6,\ c=11,\ d=-6

Hence b × c a × d = 11 \frac{b×c}{a×d}=11

There is no need to substitute a=1. You may get all other variables in terms of a. While calculating fraction, a would cancel out. \color{#3D99F6}{\text{There is no need to substitute a=1. You may get all other variables in terms of a. While calculating fraction, a would cancel out.}}

Exactly !! I did the same way ! btw Nice Solution ! :)

Keshav Tiwari - 6 years, 6 months ago

Log in to reply

good solution. but a little lengthy.

Maths Mathematics - 6 years, 6 months ago
Abhinav Raichur
Dec 1, 2014

we know from superposition that each of e x e^{x} e 2 x e^{2x} and e 3 x e^{3x} are solutions to the differential equation. Hence, 1,2 and 3{powers of solutions} are solutions to the characteristic eq. of the differential equation
which is.............. a r 3 r^{3} + b r 2 r^{2} + cr + d = 0 ( cubic equation ) we already know the roots (1,2, and 3) and by using vietas' formulas we find the answer to be of the form .....

b × c b \times c / a × d a \times d = [{sum of roots} x {sum taken two at a time}]/{product of roots} which when computed gives 11 as the answer.

That's exactly how I did it

A Former Brilliant Member - 6 years, 4 months ago
Incredible Mind
Dec 7, 2014

i sued determinants without wasting time finding a,b,c,d separately but a c/b d directly

Abhinav Rawat
Oct 15, 2015

Done exactly the same as Sandeep

y = a e x + b e 2 x + c e 3 x . . . . . . . ( 1 ) y = ae^x + be^{2x} + ce^{3x} \color{#20A900}{. . . . . . . (1)}

y = a e x + 2 b e 2 x + 3 c e 3 x = ( a e x + b e 2 x + c e 3 x ) + b e 2 x + 2 c e 3 x y' = ae^x + 2be^{2x} + 3ce^{3x} = (ae^x + be^{2x} + ce^{3x}) + be^{2x} + 2ce^{3x}

Using ( 1 ) \color{#20A900}{(1)}

y = y + b e 2 x + 2 c e 3 x = y + ( y a e x ) + c e 3 x y' = y + be^{2x} + 2ce^{3x} = y + (y - ae^x) + ce^{3x}

y = 2 y + c e 3 x a e x . . . . . . . . . ( 2 ) y' = 2y + ce^{3x} - ae^x \color{#20A900}{ . . . . . . . . . (2)}

y = 2 y + 3 c e 3 x a e x = 2 y + ( c e 3 x a e x ) + 2 c e 3 x y'' = 2y' + 3ce^{3x} - ae^x = 2y' + (ce^{3x} - ae^x) + 2ce^{3x}

Using ( 2 ) \color{#20A900}{(2)}

y = 2 y + ( y 2 y ) + 2 c e 3 x y'' = 2y' + (y' - 2y) + 2ce^{3x}

y = 3 y 2 y + 2 c e 3 x . . . . . . . . . . ( 3 ) y'' = 3y' - 2y + 2ce^{3x} \color{#20A900}{ . . . . . . . . . . (3)}

Using ( 3 ) \color{#20A900}{(3)}

y = 3 y 2 y + 6 c e 3 x = 3 y 2 y + 3 ( 2 c e 3 x ) \Rightarrow y''' = 3y'' - 2y' + 6ce^{3x} = 3y'' - 2y' + 3(2ce^{3x})

y 3 y + 2 y = 3 ( y 3 y + 2 y ) = 3 y 9 y + 6 y y''' - 3y'' + 2y' = 3(y'' - 3y' + 2y) = 3y'' - 9y' + 6y

y 6 y + 11 y 6 y = 0 \boxed{y''' - 6y'' + 11y' - 6y = 0}

b × c a × d = 11 \large \boxed{\color{#3D99F6}{\dfrac{b\times c}{a \times d}} = \huge \color{#D61F06}{11}}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...