Euler Totient Series

Evaluate lim k 1 k 2 n = 1 k φ ( n ) \displaystyle \lim_{k\to \infty}\frac{1}{k^2}\sum_{n=1}^{k}\varphi(n) .


The answer is 0.30396.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Mark Hennings
Jan 1, 2019

We note that k = 1 n φ ( k ) = k = 1 n d k μ ( d ) k d = d = 1 n μ ( d ) m n d m = d = 1 n μ ( d ) [ n 2 2 d 2 + O ( n d ) ] = 1 2 n 2 d = 1 n μ ( d ) d 2 + O ( n ln n ) n \begin{aligned} \sum_{k=1}^n \varphi(k) & = \; \sum_{k=1}^n \sum_{d|k} \mu(d)\tfrac{k}{d} \; = \; \sum_{d=1}^n \mu(d) \sum_{m \le \frac{n}{d}}m \; = \; \sum_{d=1}^n \mu(d)\left[\frac{n^2}{2d^2} + \mathrm{O}\big(\tfrac{n}{d}\big)\right] \; = \; \tfrac12n^2 \sum_{d=1}^n \frac{\mu(d)}{d^2} + \mathrm{O}(n \ln n\big) \hspace{2cm} n \to \infty \end{aligned} while d = 1 n μ ( d ) d 2 = d = 1 μ ( d ) d 2 + O ( n 1 ) = ζ ( 2 ) 1 + O ( n 1 ) n \sum_{d=1}^n \frac{\mu(d)}{d^2} \; = \; \sum_{d=1}^\infty \frac{\mu(d)}{d^2} + \mathrm{O}\big(n^{-1}\big) \; = \; \zeta(2)^{-1} + \mathrm{O}\big(n^{-1}\big) \hspace{2cm} n \to \infty and hence k = 1 n φ ( k ) = 3 π 2 n 2 + O ( n ln n ) n \sum_{k=1}^n \varphi(k) \; = \; \tfrac{3}{\pi^2}n^2 + \mathrm{O}(n \ln n\big) \hspace{2cm} n \to \infty making the desired limit equal to 3 π 2 = 0.3039635509 \boxed{\tfrac{3}{\pi^2} = 0.3039635509} .

A relevant wolfram page .............

Aaghaz Mahajan - 2 years, 5 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...