AprblmInTrigo

Level pending

If

( sin α sec 2 α 2 = l ) \biggl(\sin\alpha \sec ^{ 2 }{ \frac { \alpha }{ 2 } } =l\biggr) and ( 1 + tan α 2 sec α 2 ) ( 1 + tan α 2 + sec α 2 ) = C l \left( 1+\tan { \frac { \alpha }{ 2 } } -\sec { \frac { \alpha }{ 2 } } \right) \left( 1+\tan { \frac { \alpha }{ 2 } } +\sec { \frac { \alpha }{ 2 } } \right) =Cl

Find C C


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Soumo Mukherjee
Oct 13, 2014

( 1 + tan α / 2 sec α / 2 ) ( 1 + tan α + sec α / 2 ) = ( 1 + tan α / 2 ) 2 sec 2 α / 2 = 1 + tan 2 α / 2 + 2 tan α / 2 sec 2 α / 2 = [ cos 2 α / 2 + tan 2 α / 2 cos 2 α / 2 + 2 tan α / 2 cos 2 α / 2 1 ] / [ cos 2 α / 2 ] = [ ( cos 2 α / 2 + sin 2 α / 2 ) + 2 sin α / 2 cos α / 2 1 ] / [ cos 2 α / 2 ] = [ 2 sin α / 2 cos α / 2 ] / [ cos 2 α / 2 ] = sin α sec 2 α / 2 = l = 1. l \\\left( 1+\tan { \alpha /2 } -\sec { \alpha /2 } \right) \left( 1+\tan { \alpha } +\sec { \alpha /2 } \right) ={ \left( 1+\tan { \alpha /2 } \right) }^{ 2 }-\sec ^{ 2 }{ \alpha /2 } \\ =1+\tan ^{ 2 }{ \alpha /2 } +2\tan { \alpha } /2-\sec ^{ 2 }{ \alpha } /2\\ =\left[ \cos ^{ 2 }{ \alpha /2 } +\tan ^{ 2 }{ \alpha /2 } \cos ^{ 2 }{ \alpha /2 } +2\tan { \alpha /2 } \cos ^{ 2 }{ \alpha /2 } -1 \right] /\left[ \cos ^{ 2 }{ \alpha /2 } \right] \\ =\left[ \left( \cos ^{ 2 }{ \alpha /2 } +\sin ^{ 2 }{ \alpha /2 } \right) +2\sin { \alpha /2 } \cos { \alpha /2 } -1 \right] /\left[ \cos ^{ 2 }{ \alpha /2 } \right] \\= \left[ 2\sin { \alpha /2 } \cos { \alpha /2 } \right] /\left[ \cos ^{ 2 }{ \alpha /2 } \right] =\sin { \alpha \sec ^{ 2 }{ \alpha /2 } } =l=1.l Also Visit

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...