Let denote the arc length of the curve in the interval . Find If your answer is of the form , where , , , and are non-negative integers and and are not perfect squares, find .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Arc length f ( n ) let x = tan θ , f ( n ) Now, n → ∞ lim ( n − f ( n ) ) = ∫ a b 1 + ( d x d y ) 2 d x = ∫ 1 n 1 + ( d x d ln x ) 2 d x = ∫ 1 n 1 + ( x 1 ) 2 d x = ∫ 1 n x 1 x 2 + 1 d x ∴ d x = sec 2 θ d θ = ∫ tan − 1 ( 1 ) tan − 1 ( n ) tan θ sec 2 θ tan 2 θ + 1 d θ = ∫ 4 π tan − 1 ( n ) sin θ sec θ sec 2 θ sec 2 θ d θ = ∫ 4 π tan − 1 ( n ) sec 2 θ csc θ d θ = [ tan θ csc θ ] 4 π tan − 1 ( n ) − ∫ 4 π tan − 1 ( n ) tan θ ( − csc θ cot θ ) d θ = [ sec θ ] 4 π tan − 1 ( n ) + ∫ 4 π tan − 1 ( n ) csc θ d θ = sec tan − 1 ( n ) − sec 4 π − [ ln ( csc θ + cot θ ) ] 4 π tan − 1 ( n ) = 1 + n 2 − 2 − ln [ csc tan − 1 ( n ) + cot tan − 1 ( n ) ] + ln ( csc 4 π + cot 4 π ) = 1 + n 2 − 2 − ln ( n 1 + n 2 + n 1 ) + ln ( 2 + 1 ) = n → ∞ lim [ n − 1 + n 2 + 2 + ln ( n 1 + n 2 − n 1 ) − ln ( 2 + 1 ) ] = n → ∞ lim [ n + 1 + n 2 n 2 − ( 1 + n 2 ) + 2 + ln ( n 2 1 + 1 − n 1 ) + ln ( 2 + 1 1 ) ] = n → ∞ lim [ n + 1 + n 2 1 + ln ( n 2 1 + 1 − n 1 ) + ln ( 2 − 1 2 − 1 ) + 2 ] = 0 + ln ( 0 + 1 − 0 ) + ln ( 2 − 1 2 − 1 ) + 2 = ln ( 1 ) + ln ( 2 − 1 ) + 2 = ln ( 2 − 1 ) + 2 So the answer is 2 + 1 + 2 + 0 = 5