Arc Length of Parametric Equation

Calculus Level 3

Q : = { y = 3 t 2 1 x = t 3 3 t Q:= \begin{cases} y = 3t^{2} -1 \\ x = t^{3} - 3t \end{cases}

The curve Q Q is defined using the pair of parametric equations shown above for all real values of t t .

What is the arc length of the curve Q Q in the interval 1 t 2 1 \leq t \leq 2 ?


The answer is 10.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Pranshu Gaba
Mar 27, 2016

The arc length of a curve defined by parametric equations ( x ( t ) , y ( t ) ) (x(t), y(t)) for a t b a \leq t \leq b is given by

Arc Length = a b ( d x d t ) 2 + ( d y d t ) 2 d t \text{Arc Length} = \int\limits _{a} ^{b} \sqrt{ \left( \frac{dx}{dt} \right)^{2} + \left( \frac{dy}{dt} \right)^{2} } \, dt

In our problem, we can differentiate x x and y y with respect to t t to obtain d x d t = 6 t \frac{dx}{dt} = 6t and d y d t = 3 t 2 3 \frac{dy}{dt} = 3t^{2} - 3 . We want to find the arc length for 1 t 2 1 \leq t \leq 2 . Therefore the arc length is

Arc Length = 1 2 ( 6 t ) 2 + ( 3 t 2 3 ) 2 d t = 1 2 36 t 2 + ( 9 t 4 + 9 18 t 2 ) d t = 1 2 9 t 4 + 9 + 18 t 2 d t = 1 2 ( 3 t 2 + 3 ) 2 d t = 1 2 3 t 2 + 3 d t \begin{aligned} \text{Arc Length} & = \int\limits _{1} ^{2} \sqrt{ \left( 6t \right)^{2} + \left( 3t^{2} - 3 \right)^{2} } \, dt \\ & = \int \limits_{1} ^{2} \sqrt{ 36t^{2} + \left( 9t^{4} + 9 - 18 t^{2}\right) } \, dt \\ & = \int \limits _{1} ^{2} \sqrt{ 9t^{4} + 9 + 18 t^{2} } \, dt \\ & = \int \limits _{1} ^{2} \sqrt{ (3t^{2} + 3)^{2} } \, dt \\ & = \int \limits _{1} ^{2} |3t^{2} + 3| \, dt \\ \end{aligned}

Since 3 t 2 + 3 3t^{2} + 3 is always positive, 3 t 2 + 3 = 3 t 2 + 3 |3t^{2} + 3| = 3t^{2} + 3

Arc Length = 1 2 3 t 2 + 3 d t = [ t 3 + 3 t ] 1 2 = ( 2 3 + 3 × 2 ) ( 1 3 + 3 × 1 ) = ( 8 + 6 ) ( 1 + 3 ) = 14 4 = 10 \begin{aligned} \text{Arc Length} & = \int \limits _{1} ^{2} 3t^{2} + 3 \, dt \\ & = [t^{3} + 3t ] _{1} ^{2} \\ & = (2^{3} + 3 \times 2) - (1^{3} + 3 \times 1) \\ & = (8 + 6 ) - (1 + 3) \\ & = 14 - 4 = \boxed{10} & _\square\\ \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...