Arccot and Arctans!

Geometry Level 4

cot 1 [ a b + 1 a b ] + cot 1 [ b c + 1 b c ] + cot 1 [ c a + 1 c a ] \displaystyle\large \cot^{-1}\left[\dfrac{ab+1}{a-b}\right]+\cot^{-1} \left[\dfrac{bc+1}{b-c}\right]+\cot^{-1}\left[\dfrac{ca+1}{c-a}\right]

If a , b , c a,~b,~c are distinct non zero numbers having same sign, then the expression above returns two distinct values, m m and n n , find the value of m + n m+n .

Note: This problem uses the convention 0 < cot 1 ( x ) < π 0 < \cot^{-1}(x) < \pi for the range of the inverse cotangent function.


The answer is 9.42477796.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Kishore S. Shenoy
Oct 15, 2015

We know that, tan 1 ( 1 x ) = { π + cot 1 x x < 0 cot 1 x x > 0 \tan^{-1} \left(\dfrac{1}{x}\right) = \begin{cases}-\pi+\cot^{-1}x&x<0\\\cot^{-1}x &x>0\end{cases}

So, if a > b > c a>b>c cot 1 [ a b + 1 a b ] + cot 1 [ b c + 1 b c ] + cot 1 [ c a + 1 c a ] = tan 1 [ a b + 1 a b ] + tan 1 [ b c + 1 b c ] + tan 1 [ c a + 1 c a ] + π = tan 1 a tan 1 b + tan 1 b tan 1 c + tan 1 c tan 1 a + π = π \displaystyle\cot^{-1}\left[\dfrac{ab+1}{a-b}\right]+\cot^{-1} \left[\dfrac{bc+1}{b-c}\right]+\cot^{-1}\left[\dfrac{ca+1}{c-a}\right] \\~~~~~~~~~~~~~~~= \tan^{-1}\left[\dfrac{ab+1}{a-b}\right]+\tan^{-1} \left[\dfrac{bc+1}{b-c}\right]+\tan^{-1}\left[\dfrac{ca+1}{c-a}\right]+\pi\\~~~~~~~~~~~~~~~=\tan^{-1}a-\tan^{-1}b+\tan^{-1}b-\tan^{-1}c+\tan^{-1}c-\tan^{-1}a+\pi\\\Large=\boxed{\pi}

Or else, if you say c > b > a c>b>a cot 1 [ a b + 1 a b ] + cot 1 [ b c + 1 b c ] + cot 1 [ c a + 1 c a ] = π + tan 1 [ a b + 1 a b ] + π + tan 1 [ b c + 1 b c ] + tan 1 [ c a + 1 c a ] = tan 1 a tan 1 b + tan 1 b tan 1 c + tan 1 c tan 1 a + π = 2 π \displaystyle\cot^{-1}\left[\dfrac{ab+1}{a-b}\right]+\cot^{-1} \left[\dfrac{bc+1}{b-c}\right]+\cot^{-1}\left[\dfrac{ca+1}{c-a}\right] \\~~~~~~~~~~~~~~~= \pi+\tan^{-1}\left[\dfrac{ab+1}{a-b}\right]+\pi+\tan^{-1} \left[\dfrac{bc+1}{b-c} \right]+\tan^{-1}\left[\dfrac{ca+1}{c-a}\right]\\~~~~~~~~~~~~~~~=\tan^{-1}a-\tan^{-1}b+\tan^{-1}b-\tan^{-1}c+\tan^{-1}c-\tan^{-1}a+\pi\\\Large=\boxed{2\pi}

Hence m + n = 3 π \Huge \boxed{m+n = 3\pi}

Moderator note:

Good job keeping track of the signage.

Why are the only 2 cases that we care about a > b > c a > b > c and c > b > a c > b > a ?

@Calvin Lin sir, in the expression given, the values occur in cyclic form so that they can be taken in only two ways: Clockwise and Anticlockwise i.e. a > b > c a>b>c and c > b > a c>b>a

Kishore S. Shenoy - 5 years, 8 months ago

Log in to reply

Right, that has to be stated in the solution. Note that it is not true when we have 4 or more variables.

Calvin Lin Staff - 5 years, 8 months ago

Log in to reply

Yeah it's not... Thanks!

Kishore S. Shenoy - 5 years, 8 months ago

Cool problem! Btw you have a typo where you forgot to invert the argument.

James Wilson - 3 years, 7 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...