cot − 1 [ a − b a b + 1 ] + cot − 1 [ b − c b c + 1 ] + cot − 1 [ c − a c a + 1 ]
If a , b , c are distinct non zero numbers having same sign, then the expression above returns two distinct values, m and n , find the value of m + n .
Note: This problem uses the convention 0 < cot − 1 ( x ) < π for the range of the inverse cotangent function.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Good job keeping track of the signage.
Why are the only 2 cases that we care about a > b > c and c > b > a ?
@Calvin Lin sir, in the expression given, the values occur in cyclic form so that they can be taken in only two ways: Clockwise and Anticlockwise i.e. a > b > c and c > b > a
Log in to reply
Right, that has to be stated in the solution. Note that it is not true when we have 4 or more variables.
Cool problem! Btw you have a typo where you forgot to invert the argument.
Problem Loading...
Note Loading...
Set Loading...
We know that, tan − 1 ( x 1 ) = { − π + cot − 1 x cot − 1 x x < 0 x > 0
So, if a > b > c cot − 1 [ a − b a b + 1 ] + cot − 1 [ b − c b c + 1 ] + cot − 1 [ c − a c a + 1 ] = tan − 1 [ a − b a b + 1 ] + tan − 1 [ b − c b c + 1 ] + tan − 1 [ c − a c a + 1 ] + π = tan − 1 a − tan − 1 b + tan − 1 b − tan − 1 c + tan − 1 c − tan − 1 a + π = π
Or else, if you say c > b > a cot − 1 [ a − b a b + 1 ] + cot − 1 [ b − c b c + 1 ] + cot − 1 [ c − a c a + 1 ] = π + tan − 1 [ a − b a b + 1 ] + π + tan − 1 [ b − c b c + 1 ] + tan − 1 [ c − a c a + 1 ] = tan − 1 a − tan − 1 b + tan − 1 b − tan − 1 c + tan − 1 c − tan − 1 a + π = 2 π
Hence m + n = 3 π