Archimedean Siblings

Geometry Level pending

This arbelos shows three semicircles inscribed in a fourth semicircle. Two incircles to curvilinear triangles have also been inscribed. If O C O D = 2 \frac{OC}{OD} = 2 , what is the ratio of the radius of the larger circle to the smaller circle? Express the ratio as p q \frac{p}{q} , where p p and q q are coprime positive integers, and submit p + q p+q .


The answer is 159.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

David Vreken
Feb 11, 2021

Label the diagram as follows:

Let O D = 2 OD = 2 and O C = 4 OC = 4 , so that the radius of the left semi-circle is 1 1 , the radius of the right semi-circle is 2 2 , and the radius of the large semi-circle is 3 3 , and D A = A O = O B = B E = 1 DA = AO = OB = BE = 1 and E C = 2 EC = 2 .


Let the radius of the upside-down semi-circle be R R . Then by the Pythagorean Theorem on K H B \triangle KHB , K B = H B 2 K H 2 = 9 R 2 KB = \sqrt{HB^2 - KH^2} = \sqrt{9 - R^2} .

By the law of cosines on A K B \triangle AKB , cos K A B = A K 2 + A B 2 K B 2 2 A K A B = ( R + 1 ) 2 + 2 2 ( 9 R 2 ) 2 ( R + 1 ) 2 = R 2 + R 2 2 ( R + 1 ) \cos \angle KAB = \cfrac{AK^2 + AB^2 - KB^2}{2 \cdot AK \cdot AB} = \cfrac{(R + 1)^2 + 2^2 - (9 - R^2)}{2 \cdot (R + 1) \cdot 2} = \cfrac{R^2 + R - 2}{2(R + 1)} .

By the law of cosines on A K E \triangle AKE , cos K A B = A K 2 + A E 2 K E 2 2 A K A E = ( R + 1 ) 2 + 3 2 ( R + 2 ) 2 2 ( R + 1 ) 3 = 3 R 3 ( R + 1 ) \cos \angle KAB = \cfrac{AK^2 + AE^2 - KE^2}{2 \cdot AK \cdot AE} = \cfrac{(R + 1)^2 + 3^2 - (R + 2)^2}{2 \cdot (R + 1) \cdot 3} = \cfrac{3 - R}{3(R + 1)} .

Therefore, cos K A B = R 2 + R 2 2 ( R + 1 ) = 3 R 3 ( R + 1 ) \cos \angle KAB = \cfrac{R^2 + R - 2}{2(R + 1)} = \cfrac{3 - R}{3(R + 1)} , which solves to R = 4 3 R = \cfrac{4}{3} for R > 0 R > 0 .


Since R = 4 3 R = \cfrac{4}{3} , A K = 1 + 4 3 = 7 3 AK = 1 + \cfrac{4}{3} = \cfrac{7}{3} , K E = 2 + 4 3 = 10 3 KE = 2 + \cfrac{4}{3} = \cfrac{10}{3} , and cos K A B = 3 4 3 3 ( 4 3 + 1 ) = 5 21 \cos \angle KAB = \cfrac{3 - \frac{4}{3}}{3(\frac{4}{3} + 1)} = \cfrac{5}{21} .

That means sin K A B = 1 cos 2 K A B = 1 ( 5 21 ) 2 = 4 26 21 \sin \angle KAB = \sqrt{1 - \cos^2 \angle KAB} = \sqrt{1 - \bigg(\cfrac{5}{21}\bigg)^2} = \cfrac{4\sqrt{26}}{21} .

By the law of cosines on A K E \triangle AKE , cos K E A = K E 2 + A E 2 A K 2 2 K E A E = ( 10 3 ) 2 + 3 2 ( 7 3 ) 2 2 10 3 3 = 11 15 \cos \angle KEA = \cfrac{KE^2 + AE^2 - AK^2}{2 \cdot KE \cdot AE} = \cfrac{(\frac{10}{3})^2 + 3^2 - (\frac{7}{3})^2}{2 \cdot \frac{10}{3} \cdot 3} = \cfrac{11}{15} .

That means sin K E A = 1 cos 2 K E A = 1 ( 11 15 ) 2 = 2 26 15 \sin \angle KEA = \sqrt{1 - \cos^2 \angle KEA} = \sqrt{1 - \bigg(\cfrac{11}{15}\bigg)^2} = \cfrac{2\sqrt{26}}{15} .


Let the smaller circle have a radius of S S . By the law of cosines on A F K \triangle AFK , cos F A K = A F 2 + A K 2 F K 2 2 A F A K = ( S + 1 ) 2 + ( 7 3 ) 2 ( S + 4 3 ) 2 2 ( S + 1 ) 7 3 = 7 S 7 ( S + 1 ) \cos \angle FAK = \cfrac{AF^2 + AK^2 - FK^2}{2 \cdot AF \cdot AK} = \cfrac{(S + 1)^2 + (\frac{7}{3})^2 - (S + \frac{4}{3})^2}{2 \cdot (S + 1) \cdot \frac{7}{3}} = \cfrac{7 - S}{7(S + 1)} .

That means sin F A K = 1 cos 2 F A K = 1 ( 7 S ) 2 7 2 ( S + 1 ) 2 = 4 S ( 3 S + 7 ) 7 ( S + 1 ) \sin \angle FAK = \sqrt{1 - \cos^2 \angle FAK} = \sqrt{1 - \cfrac{(7 - S)^2}{7^2(S + 1)^2}} = \cfrac{4\sqrt{S(3S + 7)}}{7(S + 1)} .

So cos F A B = cos ( F A K + K A B ) = cos F A K cos K A B sin F A K sin K A B = 7 S 7 ( S + 1 ) 5 21 4 S ( 3 S + 7 ) 7 ( S + 1 ) 4 26 21 = 5 ( 7 S ) 16 26 S ( 3 S + 7 ) 147 ( S + 1 ) \cos \angle FAB = \cos (\angle FAK + \angle KAB) = \cos \angle FAK \cdot \cos \angle KAB - \sin \angle FAK \cdot \sin \angle KAB = \cfrac{7 - S}{7(S + 1)} \cdot \cfrac{5}{21} - \cfrac{4\sqrt{S(3S + 7)}}{7(S + 1)} \cdot \cfrac{4\sqrt{26}}{21} = \cfrac{5(7 - S) - 16\sqrt{26S(3S + 7)}}{147(S + 1)} .

By the law of cosines on F A B \triangle FAB , cos F A B = A F 2 + A B 2 F B 2 2 A F A B = ( S + 1 ) 2 + 2 2 ( 3 S ) 2 2 ( S + 1 ) 2 = 2 S 1 S + 1 \cos FAB = \cfrac{AF^2 + AB^2 - FB^2}{2 \cdot AF \cdot AB} = \cfrac{(S + 1)^2 + 2^2 - (3 - S)^2}{2 \cdot (S + 1) \cdot 2} = \cfrac{2S - 1}{S + 1} .

Therefore, cos F A B = 5 ( 7 S ) 16 26 S ( 3 S + 7 ) 147 ( S + 1 ) = 2 S 1 S + 1 \cos \angle FAB = \cfrac{5(7 - S) - 16\sqrt{26S(3S + 7)}}{147(S + 1)} = \cfrac{2S - 1}{S + 1} , which solves to S = 26 109 S = \cfrac{26}{109} .


Let the larger circle have a radius of T T . By the law of cosines on K E L \triangle KEL , cos K E L = E L 2 + K E 2 K L 2 2 E L K E = ( T + 2 ) 2 + ( 10 3 ) 2 ( T + 4 3 ) 2 2 ( T + 2 ) 10 3 = T + 10 5 ( T + 2 ) \cos \angle KEL = \cfrac{EL^2 + KE^2 - KL^2}{2 \cdot EL \cdot KE} = \cfrac{(T + 2)^2 + (\frac{10}{3})^2 - (T + \frac{4}{3})^2}{2 \cdot (T + 2) \cdot \frac{10}{3}} = \cfrac{T + 10}{5(T + 2)} .

That means sin K E L = 1 cos 2 K E L = 1 ( T + 10 ) 2 5 2 ( T + 2 ) 2 = 2 2 T ( 3 T + 10 ) 5 ( T + 2 ) \sin \angle KEL = \sqrt{1 - \cos^2 \angle KEL} = \sqrt{1 - \cfrac{(T + 10)^2}{5^2(T + 2)^2}} = \cfrac{2\sqrt{2T(3T + 10)}}{5(T + 2)} .

So cos B E L = cos ( K E A + K E L ) = cos K E A cos K E L sin K E A sin K E L = 11 15 T + 10 5 ( T + 2 ) 2 26 15 2 2 T ( 3 T + 10 ) 5 ( T + 2 ) = 11 ( T + 10 ) 8 13 T ( 3 T + 10 ) 75 ( T + 2 ) \cos \angle BEL = \cos (\angle KEA + \angle KEL) = \cos \angle KEA \cdot \cos \angle KEL - \sin \angle KEA \cdot \sin \angle KEL = \cfrac{11}{15} \cdot \cfrac{T + 10}{5(T + 2)} - \cfrac{2\sqrt{26}}{15} \cdot \cfrac{2\sqrt{2T(3T + 10)}}{5(T + 2)} = \cfrac{11(T + 10) - 8\sqrt{13T(3T + 10)}}{75(T + 2)} .

By the law of cosines on B E L \triangle BEL , cos B E L = E L 2 + B E 2 B L 2 2 E L B E = ( T + 2 ) 2 + 1 2 ( 3 T ) 2 2 ( T + 2 ) 1 = 5 T 2 T + 2 \cos BEL = \cfrac{EL^2 + BE^2 - BL^2}{2 \cdot EL \cdot BE} = \cfrac{(T + 2)^2 + 1^2 - (3 - T)^2}{2 \cdot (T + 2) \cdot 1} = \cfrac{5T - 2}{T + 2} .

Therefore, cos B E L = 11 ( T + 10 ) 8 13 T ( 3 T + 10 ) 75 ( T + 2 ) = 5 T 2 T + 2 \cos \angle BEL = \cfrac{11(T + 10) - 8\sqrt{13T(3T + 10)}}{75(T + 2)} = \cfrac{5T - 2}{T + 2} , which solves to T = 13 25 T = \cfrac{13}{25} .


Therefore, the ratio of the radius of the larger circle to the smaller circle is T S = 13 25 26 109 = 109 50 \cfrac{T}{S} = \cfrac{\frac{13}{25}}{\frac{26}{109}} = \cfrac{109}{50} , so p = 109 p = 109 , q = 50 q = 50 , and p + q = 159 p + q = \boxed{159} .

Whew! That's a lot of work. I appreciate your effort. Thank you for sharing it.

Fletcher Mattox - 4 months ago

Log in to reply

Thanks! This was a nice question, with surprisingly simple results for each radius!

David Vreken - 4 months ago

Fantastic, great solution! Interestingly, it's a completely different approach to both the one I originally used (coordinate geometry, nine equations in nine unknowns - not elegant!) and to the one I've spent a while trying to finish off, which uses inversive geometry. As I think that one is potentially also a nice method, I'll share a colour-coded version of the original diagram, and the result of inverting everything through the point O O :

@Fletcher Mattox , are any of these the way you originally solved the problem? I'm certainly intrigued that the ratio should come out to be rational.

Chris Lewis - 4 months ago

Log in to reply

This problem is beyond my abilities. I found it here . I notice that the author uses inversion to solve a similar problem in section 5 of this paper, so you may be on the right track!

Fletcher Mattox - 4 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...