Archit's Challenge 7

Algebra Level 5

For real numbers a , b , c , d , p , q , r , s a,b,c,d,p,q,r,s with b d 5 b-d\geq 5 , let the roots of the quartic polynomial f ( x ) = x 4 + a x 3 + b x 2 + c x + d f(x) = x^4 + ax^3 + bx^2 + cx + d be p , q , r p,q,r and s s . Find the minimum value of

( 1 + p 2 ) ( 1 + q 2 ) ( 1 + r 2 ) ( 1 + s 2 ) . (1+p^2)(1+q^2)(1+r^2)(1+s^2).


The answer is 16.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Aryan Goyat
Nov 28, 2015

multiply f(i) with f(-i ) we get (1+d-b)(1+d-b)+(c-a)(c-a) if c=a, d-b=-5 we get minimum

Did the same way

Righved K - 5 years, 6 months ago

you must show c=a yeilds real roots. i will show it for you: let c=a,d=1,b=6.then: x 4 + a x 3 + 6 x 2 + a x + 1 = 0 x^4+ax^3+6x^2+ax+1=0 divede by x squared: ( x + 1 x ) 2 + a ( x + 1 x ) + 4 = 0 (x+\dfrac{1}{x})^2+a(x+\dfrac{1}{x})+4=0 x + 1 x = a ± a 2 16 2 x+\dfrac{1}{x}=\dfrac{-a\pm\sqrt{a^2-16}}{2} x = a ± a 2 16 2 ± ( a ± a 2 16 2 ) 2 4 2 x=\dfrac{\dfrac{-a\pm\sqrt{a^2-16}}{2}\pm\sqrt{(\dfrac{-a\pm\sqrt{a^2-16}}{2})^2-4}}{2} there clearly exists a real a for which all 4 are real, we can take a=4 for real. so, include this in your solution as due to silly mistake i got answer 36..... i cant write a solution. @aryan goyat

Aareyan Manzoor - 5 years, 6 months ago

Log in to reply

Could you elaborate upon the need to show c=a produces real roots?

Aditya Dhawan - 4 years, 7 months ago
Harsh Poonia
Jul 18, 2019

AM-GM Inequality b = ( p + q ) ( r + s ) + p q + r s b=(p+q)(r+s)+pq+rs ( p + q ) ( r + s ) 2 p q 2 r s (Equality holds when p=q, r=s.) (p+q)(r+s) \geq 2 \sqrt{pq} \cdot 2 \sqrt{rs} \text{ (Equality holds when p=q, r=s.)} p q + r s 2 p q r s (Equality when pq=rs.) pq+rs \geq 2 \sqrt{pqrs} \text{ (Equality when pq=rs.)} b 6 p q r s b \geq 6 \sqrt{pqrs} Now the minimum value of b d b-d should be greater than or equal to 5 5 , so 6 p q r s p q r s 5 5 p q r s 1. 6 \sqrt{pqrs} - pqrs \geq 5 \implies 5 \geq pqrs \geq 1. cyclic ( 1 + p 2 ) 16 p q r s 16. Equality at p=q=r=s=1 \displaystyle\prod_{\text{cyclic}} (1+p^2) \geq 16 pqrs \geq 16. \text{ Equality at p=q=r=s=1}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...