Arclength Of r = 1 / θ r = 1/\theta

Calculus Level 4

Consider the polar curve with equation r = 1 θ r = \dfrac1\theta . What is the length of the arc traced by this curve as θ \theta (measured in radians) varies from 1 to 2?

A plot of the polar curve \(r = \dfrac1\theta\). A plot of the polar curve r = 1 θ r = \dfrac1\theta .

2 5 2 + ln ( 2 + 5 2 + 2 ) \dfrac{\sqrt{2} - \sqrt{5}}{2} + \ln\left( \dfrac{2+\sqrt{5}}{2+\sqrt{2}} \right) 2 2 5 2 + ln ( 2 + 5 1 + 2 ) \dfrac{2\sqrt{2} - \sqrt{5}}{2} + \ln\left( \dfrac{2+\sqrt{5}}{1+\sqrt{2}} \right) 2 5 2 + ln ( 2 + 5 1 + 2 ) \dfrac{\sqrt{2} - \sqrt{5}}{2} + \ln\left( \dfrac{2+\sqrt{5}}{1+\sqrt{2}} \right) 2 2 5 2 + ln ( 2 + 5 2 + 2 ) \dfrac{2\sqrt{2} - \sqrt{5}}{2} + \ln\left( \dfrac{2+\sqrt{5}}{2+\sqrt{2}} \right)

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Vincent Moroney
Jun 26, 2018

The general form of the arc-length of a polar curve is given by L = a b r 2 + ( d r d θ ) 2 d θ , L = \int_a^b \sqrt{r^2 + \Big(\frac{dr}{d\theta}\Big)^2} \, d\theta , we know r = 1 θ r = \frac{1}{\theta} , b = 2 b=2 and a = 1 a=1 . This information gives us L = 1 2 1 θ 2 + 1 θ 4 d θ = 1 2 1 θ 2 θ 2 + 1 d θ = 1 2 1 θ 2 + 1 d θ θ 2 + 1 θ 1 2 via integration by parts = arcsin h ( θ ) 1 2 θ 2 + 1 θ 1 2 = ln ( θ + θ 2 + 1 ) 1 2 θ 2 + 1 θ 1 2 = 2 2 5 2 + ln ( 2 + 5 1 + 2 ) \begin{aligned} L = & \int_1^2 \sqrt{\frac{1}{\theta^2} + \frac{1}{\theta^4}} \,d\theta \\ = & \int_1^2 \frac{1}{\theta^2}\sqrt{\theta^2+1}\,d\theta \\ = & \int_1^2 \frac{1}{\sqrt{\theta^2+1}} \,d\theta - \frac{\sqrt{\theta^2+1}}{\theta} \Big|_1^2 \, \, \, \, \, \, \, \, \text{via integration by parts}\\ = & \arcsin\text{h}(\theta)\Big|_1^2 - \frac{\sqrt{\theta^2+1}}{\theta} \Big|_1^2 \\ = & \ln(\theta + \sqrt{\theta^2+1})\Big|_1^2 - \frac{\sqrt{\theta^2+1}}{\theta} \Big|_1^2 \\ = & \boxed{\frac{2\sqrt{2}-\sqrt{5}}{2} + \ln\Big(\frac{2+\sqrt{5}}{1+\sqrt{2}}\Big)} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...