Arcsin Program!

Geometry Level 5

r = 1 25 sin 1 ( r r 1 r ( r + 1 ) ) = ? \large\displaystyle \sum\limits_{r = 1}^{25} \sin^{-1}\left(\dfrac{\sqrt{r}-\sqrt{r-1}}{\sqrt{r(r+1)}}\right) = \ ?

Give your answer to 3 decimal places.

Note: Answer in radians.


The answer is 1.373400766945015860861271926445.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Kartik Sharma
Oct 9, 2015

Suppose x = sin ( y ) \displaystyle x = \sin(y) (such that sin 1 ( x ) = y \displaystyle \sin^{-1}(x) = y )

Now,

tan ( y ) = 1 + 1 1 sin 2 ( y ) \displaystyle \tan(y) = \sqrt{1 + \frac{1}{1-\sin^2(y)}}

tan ( y ) = 2 x 2 1 x 2 \displaystyle \tan(y) = \sqrt{\frac{2-x^2}{1-x^2}}

or y = sin 1 ( x ) = tan 1 ( 2 x 2 1 x 2 ) \displaystyle y = \sin^{-1}(x) = \tan^{-1}\left(\sqrt{\frac{2-x^2}{1-x^2}}\right)

According to the question,

x = r r 1 r ( r + 1 ) \displaystyle x = \frac{\sqrt{r} - \sqrt{r-1}}{\sqrt{r(r+1)}} and so the sum becomes

r = 1 n tan 1 ( 2 ( r r 1 r ( r + 1 ) ) 2 1 ( r r 1 r ( r + 1 ) ) 2 ) \displaystyle \sum_{r = 1}^{n}{\tan^{-1}\left(\sqrt{\frac{2-{\left(\frac{\sqrt{r} - \sqrt{r-1}}{\sqrt{r(r+1)}}\right)}^2}{1-{\left(\frac{\sqrt{r} - \sqrt{r-1}}{\sqrt{r(r+1)}}\right)}^2}}\right)}

Little bashing shows

r = 1 n tan 1 ( r r 1 1 + r ( r 1 ) ) \displaystyle \sum_{r = 1}^{n}{\tan^{-1}\left(\frac{\sqrt{r} - \sqrt{r-1}}{1 + \sqrt{r(r-1)}}\right)}

r = 1 n tan 1 ( r ) tan 1 ( r 1 ) \displaystyle \sum_{r = 1}^{n}{\tan^{-1}(\sqrt{r}) - \tan^{-1}(\sqrt{r-1})}

tan 1 ( n ) \displaystyle \boxed{\tan^{-1}(\sqrt{n})}

Cool solution. Congratulation. Up voted.

Niranjan Khanderia - 5 years, 8 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...