Arctan and tan

Calculus Level 5

I = α = 2 2047 ( 0 π / 2 arctan ( tan ( x ) α ) tan ( x ) d x ) \large I = \sum\limits_{\alpha=2} ^{2047} \left( \int\limits_{0}^{\pi/2} \frac{\arctan \left( \frac{ \tan(x)}{\alpha}\right)}{\tan(x)}dx\right)

Given the expression above, find exp ( I π ) \exp \left(\frac{I}{\pi} \right) .


The answer is 32.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Mark Hennings
Dec 14, 2016

If we define F ( a ) = 0 1 2 π tan 1 ( a tan x ) tan x d x F(a) \; =\; \int_0^{\frac12\pi}\frac{\tan^{-1}(a \tan x)}{\tan x}\,dx then F ( 0 ) = 0 F(0) = 0 and F ( a ) = 0 1 2 π d x 1 + a 2 tan 2 x = 0 1 2 π sec 2 x ( 1 + a 2 tan 2 x ) ( 1 + tan 2 x ) d x = 0 d u ( 1 + a 2 u 2 ) ( 1 + u 2 ) = 1 1 a 2 0 ( 1 1 + u 2 a 2 1 + a 2 u 2 ) d u = 1 1 a 2 [ tan 1 u a tan 1 ( a u ) ] 0 = π 2 ( 1 + a ) \begin{aligned} F'(a) &= \int_0^{\frac12\pi} \frac{dx}{1 + a^2\tan^2x} \; = \; \int_0^{\frac12\pi} \frac{\sec^2x}{(1 + a^2\tan^2x)(1 + \tan^2x)}\,dx \\ &= \int_0^\infty \frac{du}{(1 + a^2u^2)(1 + u^2)} \; = \; \frac{1}{1-a^2}\int_0^\infty \left(\frac{1}{1+u^2} - \frac{a^2}{1 + a^2u^2}\right)\,du \\ &= \frac{1}{1-a^2}\Big[ \tan^{-1}u - a\tan^{-1}(au)\Big]_0^\infty \; = \; \frac{\pi}{2(1+a)} \end{aligned} for all 0 < a < 1 0 < a < 1 , and hence F ( a ) = 1 2 π ln ( 1 + a ) 0 a < 1 F(a) \; =\; \tfrac12\pi \ln(1+a) \hspace{2cm} 0 \le a < 1 and then S N = n = 2 N 0 1 2 π tan 1 ( 1 n tan x ) tan x d x = n = 2 N F ( 1 n ) = 1 2 π n = 2 N ln ( 1 + 1 n ) = 1 2 π ln ( n = 2 N n + 1 n ) = 1 2 π ln ( N + 1 2 ) S_N = \sum_{n=2}^N \int_0^{\frac12\pi}\frac{\tan^{-1}(\frac{1}{n} \tan x)}{\tan x}\,dx \; = \; \sum_{n=2}^N F\big(\tfrac{1}{n}\big) \;=\; \tfrac12\pi \sum_{n=2}^N \ln\big(1 + \tfrac{1}{n}\big) \; = \; \tfrac12\pi \ln\left(\prod_{n=2}^N \tfrac{n+1}{n}\right) \; =\; \tfrac12\pi \ln\big(\tfrac{N+1}{2}\big) so that exp ( π 1 S N ) = N + 1 2 \exp(\pi^{-1}S_N) \,=\, \sqrt{\tfrac{N+1}{2}} . With N = 2047 N = 2047 , the answer is 32 \boxed{32} .

Nice! Took me a while to realise that f(0) was zero though

Rohith M.Athreya - 4 years, 6 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...