arctan \arctan Arithmetics

Geometry Level 3

arctan ( 1 x ) arctan ( 1 x + 1 ) = arctan ( 1 2 ( x + 1 ) ) \arctan\left(\dfrac{1}{x}\right) - \arctan\left(\dfrac{1}{x + 1}\right) = \arctan\left( \dfrac{1}{2\left(x + 1\right)}\right)

Determine the value of x x that satisfies the equation above.

If you believe that there are multiple values of x x that work, input the sum of all possible solutions as your answer.


Related problem.


The answer is 1.61803398874989.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Michael Huang
Aug 6, 2017

By the following identity arctan ( 1 a ) arctan ( 1 b ) = arctan ( b a a b + 1 ) \arctan\left(\dfrac{1}{{\color{#D61F06}a}}\right) - \arctan\left(\dfrac{1}{{\color{#3D99F6}b}}\right) = \arctan\left(\dfrac{{\color{#3D99F6}b} - {\color{#D61F06}a}}{{\color{#D61F06}a}{\color{#3D99F6}b} + 1}\right) if a = x {\color{#D61F06}a} = x and b = x + 1 {\color{#3D99F6}b} = x + 1 , we have arctan ( 1 x 2 + x + 1 ) = arctan ( 1 2 ( x + 1 ) ) \arctan\left(\dfrac{1}{x^2 + x + 1}\right) = \arctan\left(\dfrac{1}{2\left(x + 1\right)}\right) where equality holds if x 2 + x + 1 = 2 ( x + 1 ) x^2 + x + 1 = 2\left(x + 1\right) Simplifying, we see that x 2 x 1 = 0 x^2 - x - 1 = 0 , the polynomial that is famous for having the golden ratio 1 + 5 2 \dfrac{1 + \sqrt{5}}{2} and 1 5 2 \dfrac{1 - \sqrt{5}}{2} as the solutions. However, since 1 5 2 \dfrac{1 - \sqrt{5}}{2} doesn't satisfy the given equation, the golden ratio \boxed{\text{golden ratio}} is the only solution that works.

Remark : Another way to show that 1 5 2 \dfrac{1 - \sqrt{5}}{2} does not satisfy the equation is to consider the following diagram: Here, \(|\overline{AB}| = 1\), \(|\overline{BC}| = x\), \(|\overline{BD}| = x + 1\) and \(|\overline{BE}| = 2\left( x + 1\right)\) Here, A B = 1 |\overline{AB}| = 1 , B C = x |\overline{BC}| = x , B D = x + 1 |\overline{BD}| = x + 1 and B E = 2 ( x + 1 ) |\overline{BE}| = 2\left( x + 1\right) Because Δ A B C \Delta ABC , Δ A B D \Delta ABD and Δ A B E \Delta ABE all share common side A B \overline{AB} with length 1 1 , then A C B , A D B \angle ACB, \angle ADB and A E B \angle AEB are all less than 9 0 90^{\circ} . In this case, x , x + 1 , 2 ( x + 1 ) > 0 x, x + 1, 2(x + 1) > 0 . Otherwise, if m A C B 9 0 m\angle ACB \geq 90^{\circ} , the given equation doesn't hold.

arctan 1 x arctan 1 x + 1 = arctan 1 2 ( x + 1 ) tan ( arctan 1 x arctan 1 x + 1 ) = tan ( arctan 1 2 ( x + 1 ) ) 1 x 1 x + 1 1 + 1 x ( x + 1 ) = 1 2 ( x + 1 ) 1 x 2 + x + 1 = 1 2 x + 2 x 2 + x + 1 = 2 x + 2 x 2 x 1 = 0 x = 1 ± 5 2 \begin{aligned} \arctan \frac 1x - \arctan \frac 1{x+1} & = \arctan \frac 1{2(x+1)} \\ \tan \left(\arctan \frac 1x - \arctan \frac 1{x+1}\right) & = \tan \left(\arctan \frac 1{2(x+1)}\right) \\ \frac {\frac 1x-\frac 1{x+1}}{1+\frac 1{x(x+1)}} & = \frac 1{2(x+1)} \\ \frac 1{x^2+x+1} & = \frac 1{2x+2} \\ \implies x^2 + x+1 & = 2x+2 \\ x^2 - x -1 & = 0 \\ \implies x & = \frac {1 \pm \sqrt 5}2 \end{aligned}

{ x = 1 + 5 2 L H S = arctan 2 1 + 5 arctan 2 3 + 5 > 0 R H S = arctan 1 3 + 5 > 0 Accepted x = 1 5 2 L H S = arctan 2 1 5 arctan 2 3 5 < 0 R H S = arctan 1 3 5 > 0 Rejected \begin{cases} x = \frac {1+\sqrt 5}2 & LHS = \arctan \frac 2{1+\sqrt 5} - \arctan \frac 2{3+\sqrt 5} \color{#3D99F6} > 0 & RHS = \arctan \frac 1{3+\sqrt 5} \color{#3D99F6} > 0 & \small \color{#3D99F6} \text{Accepted} \\ x = \frac {1-\sqrt 5}2 & LHS = \arctan \frac 2{1-\sqrt 5} - \arctan \frac 2{3-\sqrt 5} \color{#D61F06} < 0 & RHS = \arctan \frac 1{3-\sqrt 5} \color{#3D99F6} > 0 & \small \color{#D61F06} \text{Rejected} \end{cases}

Therefore, the answer x = 1 + 5 2 1.618 x = \frac {1+\sqrt 5}2 \approx \boxed{1.618} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...