Enumerating Assorted Arctans

Geometry Level 4

π = 20 arctan ( 1 7 ) + 8 arctan ( 3 k ) \large{\pi=20 \arctan\left(\frac{1}{7}\right)+8 \arctan\left(\frac{3}{k}\right)}

Find the value of k k .


The answer is 79.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Ikkyu San
Apr 12, 2016

From tan ( 2 arctan 1 7 ) = 2 tan ( arctan 1 7 ) 1 tan 2 ( arctan 1 7 ) = 2 ( 1 7 ) 1 ( 1 7 ) 2 = 2 7 × 49 48 = 7 24 \tan\left(2\arctan\dfrac17\right)=\dfrac{2\tan\left(\arctan\dfrac17\right)}{1-\tan^2\left(\arctan\dfrac17\right)}=\dfrac{2\left(\dfrac17\right)}{1-\left(\dfrac17\right)^2}=\dfrac27\times\dfrac{49}{48}=\dfrac7{24}

and tan ( 4 arctan 1 7 ) = 2 tan ( 2 arctan 1 7 ) 1 tan 2 ( 2 arctan 1 7 ) = 2 ( 7 24 ) 1 ( 7 24 ) 2 = 7 12 × 576 527 = 336 527 \tan\left(4\arctan\dfrac17\right)=\dfrac{2\tan\left(2\arctan\dfrac17\right)}{1-\tan^2\left(2\arctan\dfrac17\right)}=\dfrac{2\left(\dfrac7{24}\right)}{1-\left(\dfrac7{24}\right)^2}=\dfrac7{12}\times\dfrac{576}{527}=\dfrac{336}{527}

Thus,

tan ( 5 arctan 1 7 ) = tan ( 4 arctan 1 7 + arctan 1 7 ) = tan ( 4 arctan 1 7 ) + tan ( arctan 1 7 ) 1 tan ( 4 arctan 1 7 ) tan ( arctan 1 7 ) = 336 527 + 1 7 1 ( 336 527 ) ( 1 7 ) = 2352 + 527 3689 × 527 479 = 2879 3353 \begin{aligned}\tan\left(5\arctan\dfrac17\right)=&\tan\left(4\arctan\dfrac17+\arctan\dfrac17\right)=\dfrac{\tan\left(4\arctan\dfrac17\right)+\tan\left(\arctan\dfrac17\right)}{1-\tan\left(4\arctan\dfrac17\right)\tan\left(\arctan\dfrac17\right)}\\=&\dfrac{\dfrac{336}{527}+\dfrac17}{1-\left(\dfrac{336}{527}\right)\left(\dfrac17\right)}=\dfrac{2352+527}{3689}\times\dfrac{527}{479}=\dfrac{2879}{3353}\end{aligned}

From tan ( 2 arctan 3 k ) = 2 tan ( arctan 3 k ) 1 tan 2 ( arctan 3 k ) = 2 ( 3 k ) 1 ( 3 k ) 2 = 6 k × k 2 k 2 9 = 6 k k 2 9 \tan\left(2\arctan\dfrac3k\right)=\dfrac{2\tan\left(\arctan\dfrac3k\right)}{1-\tan^2\left(\arctan\dfrac3k\right)}=\dfrac{2\left(\dfrac3k\right)}{1-\left(\dfrac3k\right)^2}=\dfrac6k\times\dfrac{k^2}{k^2-9}=\dfrac{6k}{k^2-9}

From Equation

π = 20 arctan ( 1 7 ) + 8 arctan ( 3 k ) 2 arctan ( 3 k ) = π 4 5 arctan ( 1 7 ) tan ( 2 arctan 3 k ) = tan ( π 4 5 arctan 1 7 ) 6 k k 2 9 = tan π 4 tan ( 5 arctan 1 7 ) 1 + tan π 4 tan ( 5 arctan 1 7 ) 6 k k 2 9 = 1 2879 3353 1 + 2879 3353 6 k k 2 9 = 474 3353 × 3353 6232 2 k k 2 9 = 79 3116 6232 k = 79 k 2 711 79 k 2 6232 k 711 = 0 ( 79 k + 9 ) ( k 79 ) = 0 k = 9 79 , 79 \begin{aligned}\pi=&20\arctan\left(\dfrac17\right)+8\arctan\left(\dfrac3k\right)\\2\arctan\left(\dfrac3k\right)=&\dfrac{\pi}4-5\arctan\left(\dfrac17\right)\\\tan\left(2\arctan\dfrac3k\right)=&\tan\left(\dfrac{\pi}4-5\arctan\dfrac17\right)\\\dfrac{6k}{k^2-9}=&\dfrac{\tan\dfrac{\pi}4-\tan\left(5\arctan\dfrac17\right)}{1+\tan\dfrac{\pi}4\tan\left(5\arctan\dfrac17\right)}\\\dfrac{6k}{k^2-9}=&\dfrac{1-\dfrac{2879}{3353}}{1+\dfrac{2879}{3353}}\\\dfrac{6k}{k^2-9}=&\dfrac{474}{3353}\times\dfrac{3353}{6232}\\\dfrac{2k}{k^2-9}=&\dfrac{79}{3116}\\6232k=&79k^2-711\\79k^2-6232k-711=&0 \\(79k+9)(k-79)=&0\\k=&-\dfrac9{79},\ 79\end{aligned}

but k k should be positive because arctan ( x ) = arctan x \arctan{(-x)}=-\arctan{x} . Thus, k = 79 k=\boxed{79} .


Notes:

tan ( arctan x ) = x \tan(\arctan{x})=x

tan ( 2 x ) = 2 tan x 1 tan 2 x \tan(2x)=\dfrac{2\tan{x}}{1-\tan^2x}

tan ( x + y ) = tan x + tan y 1 tan x tan y \tan(x+y)=\dfrac{\tan{x}+\tan{y}}{1-\tan{x}\tan{y}}

tan ( x y ) = tan x tan y 1 + tan x tan y \tan(x-y)=\dfrac{\tan{x}-\tan{y}}{1+\tan{x}\tan{y}}

Great solution @Ikkyu San (+1)

shivam mishra - 5 years, 2 months ago

Brilliant solution, I loved it! (+1)

Akshay Yadav - 5 years, 2 months ago

Or much more simple and particularly faster via XPLORE:

solve(pi=20 atan(1/7)+8 atan(3/k),k=1)

k = 78.9999999999999

Andreas Wendler - 5 years, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...