Arctangent Equation

Geometry Level 4

4 arctan ( 1 5 ) arctan ( 1 x ) = π 4 \large\large4\arctan\left(\dfrac15\right)-\arctan\left(\dfrac1x\right)=\dfrac{\pi}4

Find the value of x x satisfying the above equation.


The answer is 239.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Ikkyu San
Apr 11, 2016

From tan ( 2 arctan 1 5 ) = 2 tan ( arctan 1 5 ) 1 tan 2 ( arctan 1 5 ) = 2 ( 1 5 ) 1 ( 1 5 ) 2 = 2 5 × 25 24 = 5 12 \tan\left(2\arctan\dfrac15\right)=\dfrac{2\tan\left(\arctan\dfrac15\right)}{1-\tan^2\left(\arctan\dfrac15\right)}=\dfrac{2\left(\dfrac15\right)}{1-\left(\dfrac15\right)^2}=\dfrac25\times\dfrac{25}{24}=\dfrac5{12}

Thus, tan ( 4 arctan 1 5 ) = 2 tan ( 2 arctan 1 5 ) 1 tan 2 ( 2 arctan 1 5 ) = 2 ( 5 12 ) 1 ( 5 12 ) 2 = 5 6 × 144 119 = 120 119 \tan\left(4\arctan\dfrac15\right)=\dfrac{2\tan\left(2\arctan\dfrac15\right)}{1-\tan^2\left(2\arctan\dfrac15\right)}=\dfrac{2\left(\dfrac5{12}\right)}{1-\left(\dfrac5{12}\right)^2}=\dfrac56\times\dfrac{144}{119}=\dfrac{120}{119}

From Equation

4 arctan ( 1 5 ) arctan ( 1 x ) = π 4 4 arctan ( 1 5 ) = π 4 + arctan ( 1 x ) tan ( 4 arctan 1 5 ) = tan ( π 4 + arctan 1 x ) 120 119 = tan π 4 + tan ( arctan 1 x ) 1 tan π 4 tan ( arctan 1 x ) 120 119 = 1 + 1 x 1 1 x 120 120 x = 119 + 119 x 1 = 239 x x = 239 \begin{aligned}4\arctan\left(\dfrac15\right)-\arctan\left(\dfrac1x\right)=&\dfrac{\pi}4\\4\arctan\left(\dfrac15\right)=&\dfrac{\pi}4+\arctan\left(\dfrac1x\right)\\\tan\left(4\arctan\dfrac15\right)=&\tan\left(\dfrac{\pi}4+\arctan\dfrac1x\right)\\\dfrac{120}{119}=&\dfrac{\tan\dfrac{\pi}4+\tan\left(\arctan\dfrac1x\right)}{1-\tan\dfrac{\pi}4\tan\left(\arctan\dfrac1x\right)}\\\dfrac{120}{119}=&\dfrac{1+\dfrac1x}{1-\dfrac1x}\\120-\dfrac{120}x=&119+\dfrac{119}x\\1=&\dfrac{239}x\\x=&\boxed{239}\end{aligned}


Notes:

tan ( arctan x ) = x \tan(\arctan{x})=x

tan ( 2 x ) = 2 tan x 1 tan 2 x \tan(2x)=\dfrac{2\tan{x}}{1-\tan^2x}

tan ( x + y ) = tan x + tan y 1 tan x tan y \tan(x+y)=\dfrac{\tan{x}+\tan{y}}{1-\tan{x}\tan{y}}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...