Are sine and cosine missing?

Calculus Level 5

1 tan ( x ) + cot ( x ) + sec ( x ) + csc ( x ) d x \large \int \dfrac{1}{\tan (x) + \cot (x )+ \sec (x) + \csc( x)} \, dx

If the indefinite integral above equals to cos ( x ) a + sin ( x ) b + x c \dfrac{\cos (x)}{a} + \dfrac{\sin (x)}{b} + \dfrac{x}{c} for constants a , b a,b and c c , what is the value of a + b + c a + b + c ?

Assume we ignore the arbitrary constant of integration.


The answer is -2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Akhil Bansal
Oct 13, 2015

I = 1 tan x + cot x + sec x + csc x dx \Rightarrow \text{I} = \int \dfrac{1}{\tan x + \cot x + \sec x + \csc x} \text{dx}

I = sin x cos x sin 2 x + sin x + cos x + cos 2 x dx \Rightarrow \text{I} = \int \dfrac{ \sin x \cos x}{\sin^2 x + \sin x + \cos x + \cos^2 x}\text{dx}

Multiplying and divide by 2 \text{Multiplying and divide by 2} I = 1 2 ( sin x + cos x ) 2 1 1 + sin x + cos x dx \Rightarrow \text{I} = \dfrac{1}{2} \int \dfrac{(\sin x + \cos x)^2 - 1}{1 + \sin x + \cos x} \text{dx}

I = 1 2 sin x + cos x 1 \Rightarrow \text{I} = \dfrac{1}{2} \int \sin x + \cos x - 1

I = cos x 2 + sin x 2 + x 2 + constant \Rightarrow \text{I} = \dfrac{\cos x}{-2} + \dfrac{\sin x}{2} + \dfrac{x}{-2} + \text{constant}

a + b + c = 2 + 2 2 = 2 \therefore \text{a + b + c} = -2 + 2 - 2 = \boxed{\color{#3D99F6}{-2}}

@Akhil Bansal please correct in the last rows at a+b+c=-2

Muhammad Maulana - 5 years, 8 months ago

Log in to reply

Thanks, typo mistake

Akhil Bansal - 5 years, 8 months ago
Joe Potillor
Jan 31, 2017

If you add the numbers, you will get -2. The last part of my solution didn't get captured in the picture, but the work is there.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...