Are these numbers real?

Algebra Level 2

a + b + c d + b + c + d a + c + d + a b + d + a + b c \color{#D61F06}{\dfrac{a+b+c}{d} + \dfrac{b+c+d}{a} + \dfrac{c+d+a}{b} + \dfrac{d+a+b}{c}}

Suppose, a , b , c , d \color{#3D99F6}{a, b, c, d} are positive real numbers. Then find the minimum value of the expression above.


The answer is 12.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

5 solutions

Nihar Mahajan
Jun 4, 2015

When x R + x \in \mathbb{R}^+ , x + 1 x 2 x+\dfrac{1}{x} \geq 2 .

a + b + c d + b + c + d a + c + d + a b + d + a + b c = a d + b d + c d + b a + c a + d a + c b + d b + a b + d c + a c + b c = a d + d a + b d + d b + c d + d c + b a + a b + c a + a c + c b + b c 2 + 2 + 2 + 2 + 2 + 2 12 \dfrac{a+b+c}{d} + \dfrac{b+c+d}{a} + \dfrac{c+d+a}{b} + \dfrac{d+a+b}{c} \\ = \dfrac{a}{d}+\dfrac{b}{d}+\dfrac{c}{d}+\dfrac{b}{a}+\dfrac{c}{a}+\dfrac{d}{a}+\dfrac{c}{b}+\dfrac{d}{b}+\dfrac{a}{b}+\dfrac{d}{c}+\dfrac{a}{c}+\dfrac{b}{c} \\ = \dfrac{a}{d}+\dfrac{d}{a}+\dfrac{b}{d}+\dfrac{d}{b}+\dfrac{c}{d}+\dfrac{d}{c}+\dfrac{b}{a}+\dfrac{a}{b}+\dfrac{c}{a}+\dfrac{a}{c}+\dfrac{c}{b}+\dfrac{b}{c} \\ \geq 2+2+2+2+2+2 \\ \geq \boxed{12}

Moderator note:

Right. For completeness, can you show that x + 1 x 2 x + \frac1x \ge 2 ?

In response to Challenge Master: By A . M G . M A.M - G.M inequality ,

x + 1 x 2 x × 1 x x + 1 x 2 \Large{\dfrac{x+\dfrac{1}{x}}{2} \geq \sqrt{x \times \dfrac{1}{x}} \\ \Rightarrow x+\dfrac{1}{x} \geq 2}

Nihar Mahajan - 6 years ago

Log in to reply

Oh I did the ( x 1 ) 2 0 (x-1)^2 \geq 0 then x 2 + 1 2 x x^2 + 1 \geq 2x and division by x x . Nice one Nihar!

Pi Han Goh - 6 years ago

Log in to reply

You proved it with the most basic result. Thats nice too!

Nihar Mahajan - 6 years ago

i did it same way

harish ghunawat - 6 years ago

Log in to reply

Thanks!!!! :)

Nihar Mahajan - 6 years ago

Nice solution! @Nihar Mahajan

Anuj Shikarkhane - 6 years ago

Log in to reply

Thanks!!!! :)

Nihar Mahajan - 6 years ago

a + b + c d + b + c + d a a + c + d b + a + b + d c = a + b + c d + 1 + b + c + d a + 1 a + c + d b + 1 + a + b + d c + 1 4 = a + b + c + d d + a + b + c + d a a + b + c + d b + a + b + c + d c 4 = ( a + b + c + d ) ( 1 a + 1 b + 1 c + 1 d ) 4 \frac { a+b+c }{ d } +\frac { b+c+d }{ a } \frac { a+c+d }{ b } +\frac { a+b+d }{ c } =\frac { a+b+c }{ d } +1+\frac { b+c+d }{ a } +1\frac { a+c+d }{ b } +1+\frac { a+b+d }{ c } +1-4\\ =\frac { a+b+c+d }{ d } +\frac { a+b+c+d }{ a } \frac { a+b+c+d }{ b } +\frac { a+b+c+d }{ c } -4=(a+b+c+d)\left( \frac { 1 }{ a } +\frac { 1 }{ b } +\frac { 1 }{ c } +\frac { 1 }{ d } \right) -4

from cauchy schwarz ineq we have ( a + b + c + d ) ( 1 a + 1 b + 1 c + 1 d ) ( 1 + 1 + 1 + 1 ) 2 = 16 (a+b+c+d)\left( \frac { 1 }{ a } +\frac { 1 }{ b } +\frac { 1 }{ c } +\frac { 1 }{ d } \right) \ge { \left( 1+1+1+1 \right) }^{ 2 }=16

so ( a + b + c + d ) ( 1 a + 1 b + 1 c + 1 d ) 4 12 (a+b+c+d)\left( \frac { 1 }{ a } +\frac { 1 }{ b } +\frac { 1 }{ c } +\frac { 1 }{ d } \right) -4\ge { 12 }

the minimum value is 12 12

Moderator note:

This is correct too.

I just thought it simple. If the whole numbers a,b,c,d are 1, that's the minimum value in this case.

Moderator note:

How do you know that the minimum occurs at a = b = c = d = 1 a=b=c=d=1 ?

Chris Cheong
Jun 14, 2015

(this is only a trick for guessing and is not a proper solution)

For a symmetrical expression, the max or min usually happens when all the terms are the same. Changing everything to x gives 12.

Roshan Kumar
Jun 7, 2015

Here, i see the whole expression is symmetric along a,b,c,d. So, I will put all these numbers equall to each other to obtain the critical value ;) , i.e. a=b=c=d , which makes the expression equals to 12.

Moderator note:

Your statement is not always true

So, I will put all these numbers equall to each other to obtain the critical value

See the problems in Inequalities with strange equality conditions .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...