Are they ugly boxes or matrices?

Algebra Level 4

P = [ 1 0 0 4 1 0 16 4 1 ] P = \begin{bmatrix} 1 & 0 &0 \\ 4 & 1 & 0\\ 16 &4 &1 \end{bmatrix}

Matrix P P is defined as above and I I is the identity matrix of order 3 3 . If Q = [ q i j ] Q=[q_{ij}] is such that P 50 Q = I P^{50}-Q=I , find q 31 + q 32 q 21 \dfrac{ q_{31} + q_{32}}{q_{21}} .

This problem is from JEE Advanced 2016

103 205 201 52

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Guilherme Niedu
May 22, 2020

I'll prove by induction that:

P n = [ 1 0 0 4 n 1 0 8 ( n 2 + n ) 4 n 1 ] \large \displaystyle P^n = \begin{bmatrix} 1 & 0 & 0 \\ 4n & 1 & 0 \\ 8(n^2+n) & 4n & 1 \end{bmatrix}

First the base case:

P 1 = [ 1 0 0 4 1 0 16 4 1 ] = P \large \displaystyle P^1 = \begin{bmatrix} 1 & 0 & 0 \\ 4 & 1 & 0 \\ 16 & 4 & 1 \end{bmatrix} = P

Which holds. Then the general case:

P n P = [ 1 0 0 4 n 1 0 8 ( n 2 + n ) 4 n 1 ] [ 1 0 0 4 1 0 16 4 1 ] = [ 1 0 0 4 n + 4 1 0 8 ( n 2 + n ) + 16 n + 16 4 n + 4 1 ] \large \displaystyle P^n \cdot P = \begin{bmatrix} 1 & 0 & 0 \\ 4n & 1 & 0 \\ 8(n^2+n) & 4n & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 & 0 \\ 4 & 1 & 0 \\ 16 & 4 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 4n + 4 & 1 & 0 \\ 8(n^2+n) + 16n + 16 & 4n + 4 & 1 \end{bmatrix}

P n P = [ 1 0 0 4 ( n + 1 ) 1 0 8 [ ( n + 1 ) 2 + ( n + 1 ) ] 4 ( n + 1 ) 1 ] = P n + 1 \large \displaystyle P^n \cdot P = \begin{bmatrix} 1 & 0 & 0 \\ 4(n + 1) & 1 & 0 \\ 8[(n+1)^2+(n+1)] & 4(n + 1) & 1 \end{bmatrix} = P^{n+1}

This proves the induction.

Then:

P 50 = [ 1 0 0 200 1 0 20400 200 1 ] \large \displaystyle P^{50} = \begin{bmatrix} 1 & 0 & 0 \\ 200 & 1 & 0 \\ 20400 & 200 & 1 \end{bmatrix}

Q = P 50 I = [ 0 0 0 200 0 0 20400 200 0 ] \color{#20A900} \boxed{ \large \displaystyle Q = P^{50} - I = \begin{bmatrix} 0 & 0 & 0 \\ 200 & 0 & 0 \\ 20400 & 200 & 0 \end{bmatrix} }

So:

q 31 = 20400 , q 32 = q 21 = 200 q 31 + q 32 q 21 = 103 \color{#3D99F6} \large \displaystyle q_{31} = 20400, q_{32} = q_{21} = 200 \rightarrow \boxed{ \large \displaystyle \frac{q_{31}+q_{32}}{q_{21}} = 103} .

In fact this general ratio for Q = P n I Q = P^n - I will be 2 n + 3 2n+3 .

Shubham Joshi
May 22, 2020

P = \(\begin{bmatrix} 1 & 0 &0 \\ 4&1 & 0\\
16& 4 &1
\end{bmatrix} = \begin{bmatrix} 0 & 0 &0 \\ 4 &0 &0 \\ 16&4 &0 \end{bmatrix}

+

\begin{bmatrix} 1 &0 &0 \\ 0 & 1 &0 \\ 0 & 0 & 1 \end{bmatrix}\)

Let A = [ 0 0 0 4 0 0 16 4 0 ] \begin{bmatrix} 0 & 0 &0 \\ 4 &0 &0 \\ 16&4 &0 \end{bmatrix}

A 2 A^2 = [ 0 0 0 0 0 0 16 0 0 ] \begin{bmatrix} 0 & 0 &0 \\ 0& 0 & 0\\ 16 & 0 &0 \end{bmatrix}

A 3 A^3 = [ 0 0 0 0 0 0 0 0 0 ] \begin{bmatrix} 0 & 0 &0 \\ 0& 0 & 0\\ 0& 0 &0 \end{bmatrix}

A n A^n is also a null matrix for all n 3 n \geq 3

So

P 50 P^{50} = ( I + A ) 50 (I+A)^{50}

Now Binomial expansion

( I + A ) 50 (I+A)^{50} = I + 50A + 50 49 A 2 2 \frac{50 * 49*A^2}{2} + 0

Here we get the value of P 50 P^{50} - I

Now q 31 + q 32 q 21 \frac{q31+q32}{q21} = 16 ( 50 + 25 49 ) + 50 4 50 4 \frac{16(50+25*49) +50*4}{50*4}

= 103 \boxed{103}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...