Are we in sinc?

Calculus Level 4

cos ( π 12 ) cos ( π 24 ) cos ( π 48 ) cos ( π 96 ) = ? \large \cos \left(\frac{\pi}{12}\right) \cos \left(\frac{\pi}{24} \right)\cos \left(\frac{\pi}{48} \right) \cos \left(\frac{\pi}{96}\right) \cdots = \ ?

Give your answer to 3 decimal places.

Bonus: Can you find the exact value of the expression?


The answer is 0.9549.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Jake Lai
Jun 29, 2015

Recall the double-angle identity for sines sin θ = 2 sin θ 2 cos θ 2 \sin \theta = 2\sin \frac{\theta}{2}\cos \frac{\theta}{2} .

Using the identity repeatedly on sin θ 2 k \sin \frac{\theta}{2^{k}} gives the product

sin θ = 2 n sin θ 2 n k = 1 n cos θ 2 k \sin \theta = 2^{n} \sin \frac{\theta}{2^{n}} \prod_{k=1}^{n} \cos \frac{\theta}{2^{k}}

for all positive integral n n . Taking the limit to infinity we have

lim n 2 n sin θ 2 n k = 1 n cos θ 2 k = lim n 2 n θ 2 n k = 1 n cos θ 2 k = θ k = 1 cos θ 2 k \lim_{n \rightarrow \infty} 2^{n} \sin \frac{\theta}{2^{n}} \prod_{k=1}^{n} \cos \frac{\theta}{2^{k}} = \lim_{n \rightarrow \infty} 2^{n} \frac{\theta}{2^{n}} \prod_{k=1}^{n} \cos \frac{\theta}{2^{k}} = \theta \prod_{k=1}^{\infty} \cos \frac{\theta}{2^{k}}

since sin θ θ \sin \theta \approx \theta when θ 0 \theta \rightarrow 0 . This means that

k = 1 cos θ 2 k = sin θ θ \prod_{k=1}^{\infty} \cos \frac{\theta}{2^{k}} = \frac{\sin \theta}{\theta}

Substituting θ = π 6 \theta = \frac{\pi}{6} we finally get

k = 1 cos θ 2 k = sin π / 6 π / 6 = 3 π \prod_{k=1}^{\infty} \cos \frac{\theta}{2^{k}} = \frac{\sin \pi / 6}{\pi / 6} = \boxed{\frac{3}{\pi}}

In the penultimate step, I guess you forgot to put the limit with n n\to\infty .

Nonetheless, nicely written solution and a very good problem. Upvoted! :)


My method was similar to this but I used different approximations. Here's my method (posting it because I'm really bored now). The limit is,

L = lim n k = 0 n cos ( π 12 2 k ) L=\lim_{n\to\infty}\prod_{k=0}^n\cos\left(\frac{\pi}{12\cdot 2^k}\right)

Using the sine double angle formula like you did, the product telescopes as,

L = lim n sin π 6 2 n + 1 sin ( π 12 2 n ) = y = 2 n + 1 lim y 1 2 y sin ( π 6 y ) = z = 1 / y lim z 0 z / 2 sin ( z π 6 ) L=\lim_{n\to\infty}\frac{\sin\frac{\pi}{6}}{2^{n+1}\sin\left(\frac{\pi}{12\cdot 2^n}\right)}\overset{y=2^{n+1}}{=}\lim_{y\to\infty}\frac{1}{2y\sin\left(\frac{\pi}{6y}\right)}\overset{z=1/y}{=}\lim_{z\to 0}\frac{z/2}{\sin\left(z\frac{\pi}{6}\right)}

L = t = ( z π / 6 ) 6 / 2 π lim t 0 sin t t = 6 / 2 π 1 = 6 2 π = 3 π \implies L\overset{t=(z\pi/6)}{=}\frac{6/2\pi}{\displaystyle\lim_{t\to 0}\frac{\sin t}t}=\frac{6/2\pi}{1}=\frac{6}{2\pi}=\frac{3}{\pi}

Prasun Biswas - 5 years, 11 months ago
Tanishq Varshney
Jun 28, 2015

k = 0 n cos ( θ 2 k ) = sin ( θ ) cos ( θ ) 2 n sin ( θ 2 n ) \huge{\displaystyle \prod _{ k=0 }^{ n }{ \cos { \left( \frac { \theta }{ { 2 }^{ k } } \right) } } =\frac { \sin { \left( \theta \right) \cos { \left( \theta \right) } } }{ { 2 }^{ n }\sin { \left( \frac { \theta }{ { 2 }^{ n } } \right) } } }

here θ = π 12 \theta=\frac{\pi}{12}

lim n sin ( π 12 ) cos ( π 12 ) 2 n sin ( π 12 2 n ) \large{\displaystyle \lim_{n\to \infty} \frac{\sin (\frac{\pi}{12}) \cos (\frac{\pi}{12})}{2^{n}\sin(\frac{\frac{\pi}{12}}{2^{n}})}}

Now its easy to apply the limit, multiply and divide by π 12 2 n \frac{\frac{\pi}{12}}{2^{n}}

we get finally

12 π sin ( π 12 ) cos ( π 12 ) = 0.9549 \large{\frac{12}{\pi} \sin (\frac{\pi}{12})\cos (\frac{\pi}{12})=0.9549}

Moderator note:

Can you prove your very first line?

Kishore S. Shenoy
Aug 22, 2015

I appreciate Jake Lai for his wonderful method.

Define A n = cos π 12 cos π 24 cos π 48 cos π 3 2 n sin π 3 2 n A_n = \cos\dfrac{\pi}{12} \cos\dfrac{\pi}{24}\cos\dfrac{\pi}{48}\cdots \cos\dfrac{\pi}{3\cdot 2^n} \cdot \sin\dfrac{\pi}{3\cdot 2^n}

So,

A n = cos π 12 cos π 24 cos π 48 cos π 3 2 n sin π 3 2 n = 1 2 n 2 cos π 12 sin π 12 = 1 2 n 1 sin π 6 = 1 2 n Now, P is the required product, P = A n sin π 3 2 n lim x b n = 1 2 n 1 sin π 3 2 n Now, when n , π 3 2 n 0 lim x b n = 1 2 n 3 2 n π = 3 π 0.955 \begin{aligned} A_n &= \cos\dfrac{\pi}{12} \cos\dfrac{\pi}{24}\cos\dfrac{\pi}{48}\cdots \cos\dfrac{\pi}{3\cdot 2^n} \cdot \sin\dfrac{\pi}{3\cdot 2^n}\\ &=\dfrac{1}{2^{n-2}}\cos\dfrac{\pi}{12}\sin\dfrac{\pi}{12}\\ &=\dfrac{1}{2^{n-1}} \sin\dfrac{\pi}{6} \\ &= \dfrac{1}{2^n}\\ \text{Now, P is the} &\text{ required product, }\\ P &= \dfrac{A_n}{\sin \dfrac{\pi}{3\cdot 2^n}}\\ \lim_{x \to \infty} b_n &= \dfrac{1}{2^n} \cdot \dfrac{1}{\sin\dfrac{\pi}{3\cdot 2^n}}\\ \text{Now, when } n &\to \infty, ~ \frac{\pi}{3\cdot 2^n} \to 0 \\ \Rightarrow \lim_{x \to \infty} b_n &= \dfrac{1}{2^n}\dfrac{3\cdot 2^n} {\pi} \\ &= \boxed{\Large\dfrac{3}{\pi}}\\ &\approx 0.955 \end{aligned}

Moderator note:

The definition of A n A_n should be done separately from the calculations, especially since A n A_n isn't something that's defined in the problem. This unnecessarily complicates the solution, because the readers are not certain what to be expecting.

E.g.

Let A n = cos π 12 cos π 24 cos π 48 cos π 3 2 n sin π 3 2 n A_n = \cos\dfrac{\pi}{12} \cos\dfrac{\pi}{24}\cos\dfrac{\pi}{48}\cdots \cos\dfrac{\pi}{3\cdot 2^n} \cdot \sin\dfrac{\pi}{3\cdot 2^n} . We will show that A n = 1 2 n A_ n = \dfrac{1}{2^n}

I'm a guy.

Jake Lai - 5 years, 9 months ago

Log in to reply

Sorry, I made corrections

Kishore S. Shenoy - 5 years, 9 months ago

The definition of A n A_n should be done separately from the calculations, especially since A n A_n isn't something that's defined in the problem. This unnecessarily complicates the solution, because the readers are not certain what to be expecting.

E.g.

Let A n = cos π 12 cos π 24 cos π 48 cos π 3 2 n sin π 3 2 n A_n = \cos\dfrac{\pi}{12} \cos\dfrac{\pi}{24}\cos\dfrac{\pi}{48}\cdots \cos\dfrac{\pi}{3\cdot 2^n} \cdot \sin\dfrac{\pi}{3\cdot 2^n} . We will show that A n = 1 2 n A_ n = \dfrac{1}{2^n}

Calvin Lin Staff - 5 years, 9 months ago

Log in to reply

Yes boss! Done. Thanks

Kishore S. Shenoy - 5 years, 9 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...