Are you as smart as Gauss?

Algebra Level 3

Let d 1 . d 2 , . . . , d n d_1. d_2, ..., d_n be all the positive factors of 11 ! 11! . Find the value of k = 1 n 1 d k + 11 ! \sum_{k=1}^n\,\frac{1}{d_k+\sqrt{11!}}


The answer is 0.042735216.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Zico Quintina
Jun 28, 2018

We first calculate d ( 11 ! ) d(11!) , the number of positive divisors of 11 ! 11! , by finding its prime decomposition. 11 ! 11! will only have prime factors 2 , 3 , 5 , 7 2, 3, 5, 7 and 11 11 ; if we write 11 ! = 2 a 3 b 5 c 7 d 1 1 e 11! = 2^a \cdot 3^b \cdot 5^c \cdot 7^d \cdot 11^e , we can find the exponents of each prime factor as follows:

a = 11 ! 2 + 11 ! 2 2 + 11 ! 2 3 = 8 b = 11 ! 3 + 11 ! 3 2 = 4 c = 11 ! 5 = 2 d = 11 ! 7 = 1 e = 11 ! 11 = 1 \begin{array}{rll} a &= \ \ \left\lfloor \dfrac{11!}{2} \right\rfloor + \left\lfloor \dfrac{11!}{2^2} \right\rfloor + \left\lfloor \dfrac{11!}{2^3} \right\rfloor \ \ = \ \ 8 \\ \\ b &= \ \ \left\lfloor \dfrac{11!}{3} \right\rfloor + \left\lfloor \dfrac{11!}{3^2} \right\rfloor \ \ = \ \ 4 \\ \\ c &= \ \ \left\lfloor \dfrac{11!}{5} \right\rfloor \ \ = \ \ 2 \\ \\ d &= \ \ \left\lfloor \dfrac{11!}{7} \right\rfloor \ \ = \ \ 1 \\ \\ e &= \ \ \left\lfloor \dfrac{11!}{11} \right\rfloor \ \ = \ \ 1 \end{array}

This gives 11 ! = 2 8 3 4 5 2 7 11 11! = 2^8 \cdot 3^4 \cdot 5^2 \cdot 7 \cdot 11 , and then the number of positive divisors would be d ( 11 ! ) = ( 8 + 1 ) ( 4 + 1 ) ( 2 + 1 ) ( 1 + 1 ) ( 1 + 1 ) = 540 d(11!) = (8 + 1)(4 + 1)(2 + 1)(1 + 1)(1 + 1) = 540 .

We now arrange the factors, not in increasing size, but by factor pairs; i.e. d 1 = 1 , d 2 = 11 ! , d 3 = 2 , d 4 = 11 ! 2 , d_1 = 1, d_2 = 11!, d_3 = 2, d_4 = \frac{11!}{2}, \dots Then d 2 k 1 d_{2k - 1} and d 2 k d_{2k} will form factor pairs, and we will have 270 such factor pairs.

Consider any two terms in the sum formed from such a factor pair.

1 d 2 k 1 + 11 ! + 1 d 2 k + 11 ! = d 2 k + 11 ! + d 2 k 1 + 11 ! ( d 2 k 1 + 11 ! ) ( d 2 k + 11 ! ) = 2 11 ! + d 2 k 1 + d 2 k d 2 k 1 d 2 k + 11 ! ( d 2 k 1 + d 2 k ) + 11 ! [ But d 2 k 1 d 2 k = 11 ! ] = 2 11 ! + d 2 k 1 + d 2 k 2 ( 11 ! ) + 11 ! ( d 2 k 1 + d 2 k ) = 2 11 ! + d 2 k 1 + d 2 k 11 ! ( 2 11 ! + d 2 k 1 + d 2 k ) = 1 11 ! \begin{array}{rlccl} \dfrac{1}{d_{2k - 1}+\sqrt{11!}} + \dfrac{1}{d_{2k} + \sqrt{11!}} &= \ \ \dfrac{d_{2k} + \sqrt{11!} + d_{2k - 1}+\sqrt{11!}}{\left( d_{2k - 1} + \sqrt{11!} \right) \left(d_{2k} + \sqrt{11!} \right)} \\ \\ &= \ \ \dfrac{2 \sqrt{11!} + d_{2k - 1} + d_{2k}}{d_{2k - 1} d_{2k} + \sqrt{11!} \left( d_{2k - 1} + d_{2k} \right) + 11!} & & & \small \text{[ But } d_{2k - 1} d_{2k} = 11! \ ] \\ \\ &= \ \ \dfrac{2 \sqrt{11!} + d_{2k - 1} + d_{2k}}{2 (11!) + \sqrt{11!} \left( d_{2k - 1} + d_{2k} \right)} \\ \\ &= \ \ \dfrac{2 \sqrt{11!} + d_{2k - 1} + d_{2k}}{\sqrt{11!} \left( 2 \sqrt{11!} + d_{2k - 1} + d_{2k} \right)} \\ \\ &= \ \ \dfrac{1}{\sqrt{11!}} \end{array}

Thus every such pair of terms adds up to 1 11 ! \dfrac{1}{\sqrt{11!}} , and there are 270 270 such pairs in our sum. Therefore

k = 0 n 1 d k + 11 ! = 270 11 ! 0.042735216 \begin{array}{rl} \sum_{k = 0}^n\ \frac{1}{d_k + \sqrt{11!}} &= \ \ \dfrac{270}{\sqrt{11!}} \\ \\ &\approx \ \ \boxed{0.042735216} \end{array}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...