Are you familiar with the rules of exponents? - 1

Algebra Level pending

( 8 6 1 6 3 7 9 4 4 3 2 4 9 1 ) 3 = ? \large{\left(\dfrac{8^{-6}\cdot 16^3 \cdot 7^9}{4^{-4}\cdot 3^2 \cdot 49^{-1}}\right)^{-3}=?}

2 6 7 33 4 \dfrac{2^6 \cdot 7^{33}}{4} 64 7 29 64 \cdot 7^{29} 729 7 33 36 \dfrac{729 \cdot 7^{33}}{36} 3 6 2 6 7 33 \dfrac{3^6}{2^6 \cdot 7^{33}}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

( 8 6 1 6 3 7 9 4 4 3 2 4 9 1 ) 3 \left(\dfrac{8^{-6}\cdot 16^3 \cdot 7^9}{4^{-4}\cdot 3^2 \cdot 49^{-1}}\right)^{-3}

= ( 4 4 1 6 3 7 9 49 8 6 3 2 ) 3 = ( 2 2 ( 4 ) 2 4 ( 3 ) 7 9 7 2 2 3 ( 6 ) 3 2 ) 3 = ( 2 8 2 12 7 11 2 18 3 2 ) 3 = ( 2 20 7 11 2 18 3 2 ) 3 = ( 2 2 7 11 3 2 ) 3 = 2 6 7 33 3 6 = =\left(\dfrac{4^{4}\cdot 16^3 \cdot 7^9 \cdot 49}{8^{6}\cdot 3^2}\right)^{-3}=\left(\dfrac{2^{2(4)} \cdot 2^{4(3)} \cdot 7^9 \cdot 7^2}{2^{3(6)} \cdot 3^2}\right)^{-3}=\left(\dfrac{2^8 \cdot 2^{12} \cdot 7^{11}}{2^{18} \cdot 3^2}\right)^{-3}=\left(\dfrac{2^{20} \cdot 7^{11}}{2^{18} \cdot 3^2}\right)^{-3}=\left(\dfrac{2^2 \cdot 7^{11}}{3^2}\right)^{-3}=\dfrac{2^{-6} \cdot 7^{-33}}{3^{-6}}= 3 6 2 6 7 33 \boxed{\dfrac{3^6}{2^6 \cdot 7^{33}}}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...